Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Plant Cell Rep ; 43(6): 147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771491

ABSTRACT

KEY MESSAGE: Thchit42 constitutive expression for fungal resistance showed synchronisation with leaf augmentation and transcriptome analysis revealed the Longifolia and Zinc finger RICESLEEPER gene is responsible for plant growth and development. Pelargonium graveolens essential oil possesses significant attributes, known for perfumery and aromatherapy. However, optimal yield and propagation are predominantly hindered by biotic stress. All biotechnological approaches have yet to prove effective in addressing fungal resistance. The current study developed transgenic geranium bridging molecular mechanism of fungal resistance and plant growth by introducing cassette 35S::Thchit42. Furthermore, 120 independently putative transformed explants were regenerated on kanamycin fortified medium. Primarily transgenic lines were demonstrated peak pathogenicity and antifungal activity against formidable Colletotrichum gloeosporioides and Fusarium oxysporum. Additionally, phenotypic analysis revealed ~ 2fold increase in leaf size and ~ 2.1fold enhanced oil content. To elucidate the molecular mechanisms for genotypic cause, de novo transcriptional profiles were analyzed to indicate that the auxin-regulated longifolia gene is accountable for augmentation in leaf size, and zinc finger (ZF) RICESLEEPER attributes growth upregulation. Collectively, data provides valuable insights into unravelling the mechanism of Thchit42-mediated crosstalk between morphological and chemical alteration in transgenic plants. This knowledge might create novel opportunities to cultivate fungal-resistant geranium throughout all seasons to fulfil demand.


Subject(s)
Disease Resistance , Fusarium , Gene Expression Regulation, Plant , Pelargonium , Plant Leaves , Plants, Genetically Modified , Pelargonium/genetics , Fusarium/pathogenicity , Fusarium/physiology , Disease Resistance/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Colletotrichum/pathogenicity , Colletotrichum/physiology , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Geranium/genetics
2.
Plant Cell Rep ; 43(4): 104, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507094

ABSTRACT

KEY MESSAGE: The present study reports differentially expressed transcripts in the waterlogging-induced adventitious root (AR) of Mentha arvensis; the identified transcripts will help to understand AR development and improve waterlogging stress response. Waterlogging notably hampers plant growth in areas facing waterlogged soil conditions. In our previous findings, Mentha arvensis was shown to adapt better in waterlogging conditions by initiating the early onset of adventitious root development. In the present study, we compared the transcriptome analysis of adventitious root induced after the waterlogging treatment with the control taproot. The biochemical parameters of total carbohydrate, total protein content, nitric oxide (NO) scavenging activity and antioxidant enzymes, such as catalase activity (CAT) and superoxide dismutase (SOD) activity, were enhanced in the adventitious root compared with control taproot. Analysis of differentially expressed genes (DEGs) in adventitious root compared with the control taproot were grouped into four functional categories, i.e., carbohydrate metabolism, antioxidant activity, hormonal regulation, and transcription factors that could be majorly involved in the development of adventitious roots. Differential expression of the upregulated and uniquely expressing thirty-five transcripts in adventitious roots was validated using qRT-PCR. This study has generated the resource of differentially and uniquely expressing transcripts in the waterlogging-induced adventitious roots. Further functional characterization of these transcripts will be helpful to understand the development of adventitious roots, leading to the resistance towards waterlogging stress in Mentha arvensis.


Subject(s)
Mentha , Mentha/genetics , Mentha/metabolism , Gene Expression Profiling , Plant Roots/metabolism
3.
Physiol Plant ; 176(2): e14260, 2024.
Article in English | MEDLINE | ID: mdl-38511471

ABSTRACT

Bacosides are dammarane-type triterpenoidal saponins in Bacopa monnieri and have various pharmacological applications. All the bacosides are diversified from two isomers, i.e., jujubogenin and pseudojujubogenin. The biosynthetic pathway of bacoside is not well elucidated. In the present study, we characterized a UDP-glycosyltransferase, UGT79A18, involved in the glycosylation of pseudojujubogenin. UGT79A18 shows higher expression in response to 5 h of wounding, and 3 h of MeJA treatment. The recombinant UGT79A18 shows in vitro activity against a wide range of flavonoids and triterpenes and has a substrate preference for protopanaxadiol, a dammarane-type triterpene. Secondary metabolite analysis of overexpression and knockdown lines of UGT79A18 in B. monnieri identify bacopasaponin D, bacopaside II, bacopaside N2 and pseudojujubogenin glucosyl rhamnoside as the major bacosides that were differentially accumulated. In the overexpression lines of UGT79A18, we found 1.7-fold enhanced bacopaside II, 8-fold enhanced bacopasaponin D, 3-fold enhanced pseudojujubogenin glucosyl rhamnoside, and 1.6-fold enhanced bacopaside N2 content in comparison with vector control plant, whereas in the knockdown lines of UGT79A18, we found 1.4-fold reduction in bacopaside II content, 3-fold reduction in the bacopasaponin D content, 2-fold reduction in the pseudojujubogenin glucosyl rhamnoside content, and 1.5-fold reduction in bacopaside N2 content in comparison with vector control. These results suggest that UGT79A18 is a significant UDP glycosyltransferase involved in glycosylating pseudojujubogenin and enhancing the pseudojujubogenin-derived bacosides.


Subject(s)
Acetates , Bacopa , Cyclopentanes , Oxylipins , Saponins , Triterpenes , Bacopa/genetics , Bacopa/chemistry , Glycosyltransferases/genetics , Biosynthetic Pathways , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use , Dammaranes , Uridine Diphosphate , Plant Extracts/chemistry
4.
Phys Chem Chem Phys ; 26(6): 5311-5322, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38268444

ABSTRACT

To understand the physical phenomena responsible for radiation damage of the materials used in nuclear reactors, and thus study their operation life and/or efficiency, it is required to simulate the conditions by exposing the materials to energetic ions. Ceria (CeO2) has been proposed as one of the inert matrices for the transmutation of minor actinides in the futuristic inert matrix fuel (IMF) concept. The inert matrix should also contain burnable poison to compensate for the initial reactivity of fuel. In this context, gadolinium (Gd) is an excellent burnable poison with a high neutron absorption cross-section. In view of this, Gd2O3-CeO2 nano-powders were synthesized and sintered at 800 °C and 1300 °C to obtain different grain sizes and morphologies. FESEM and TEM were carried out to study the grain size of pristine pellets. The sintered pellets were irradiated with 80-MeV Ag ions (electronic energy loss (Se) regime) at room temperature to emulate the effect of fission fragments. For analysis of the effect of grain size on the irradiation-induced structural degradation at different fluences, GIXRD and Raman spectroscopy were performed. Significantly large damage has been observed for the smaller grain-sized samples (sintered at 800 °C) as compared to the large grain-sized sample (sintered at 1300 °C). Neither of the samples amorphized under the present experimental conditions as indicated by the presence of the Raman-active T2g mode (centred at 462 cm-1) and all the XRD peaks of fluorite cubic structure up to the highest fluence employed (1 × 1014 ions cm-2). X-ray photoelectron spectroscopy results demonstrate that Ce4+ to Ce3+ and vacancy-related isolated clusters are the main defects produced in the systems. The radiation tolerance behaviour of the samples is understood with the help of thermal spike simulation, which indicates higher transient lattice temperatures with longer duration in the smaller grain-sized sample upon irradiation. Gd-doped ceria thus possesses good radiation stability in the Se regime, indicating its potential for application in IMFs.

5.
Cryst Growth Des ; 23(4): 2782-2794, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37038396

ABSTRACT

We have studied by means of angle-dispersive powder synchrotron X-ray diffraction the structural behavior of KCaPO4, SrKPO4, and K2Ce(PO4)2 under high pressure up to 26, 25, and 22 GPa, respectively. For KCaPO4, we have also accurately determined the crystal structure under ambient conditions, which differs from the structure previously reported. Arguments supporting our structural determination will be discussed. We have found that KCaPO4 undergoes a reversible phase transition. The onset of the transition is at 5.6 GPa. It involves a symmetry decrease. The low-pressure phase is described by space group P3̅m1 and the high-pressure phase by space group Pnma. For KSrPO4 and K2Ce(PO4)2, no evidence of phase transitions has been found up to the highest pressure covered by the experiments. For the three compounds, the linear compressibility for the different crystallographic axes and the pressure-volume equation of states are reported and compared with those of other phosphates. The three studied compounds are among the most compressible phosphates. The results of the study improve the knowledge about the high-pressure behavior of complex phosphates.

6.
Plant Mol Biol ; 110(3): 235-251, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35780285

ABSTRACT

KEY MESSAGE: OscWRKY1 from Ocimum sanctum positively regulates phenylpropanoid pathway genes and rosmarinic acid content. OscWRKY1 overexpression promotes resistance against bacterial pathogen in Arabidopsis. WRKY transcription factor (TF) family regulates various developmental and physiological functions in plants. PAL genes encode enzymes which are involved in plant defense responses, but the direct regulation of PAL genes and phenylpropanoid pathway through WRKY TF's is not well characterized. In the present study, we have characterized an OscWRKY1 gene from Ocimum sanctum which shows induced expression by methyl jasmonate (MeJA), salicylic acid (SA), and wounding. The recombinant OscWRKY1 protein binds to the DIG-labeled (Digoxigenin) W-box cis-element TTGAC[C/T] and activates the LacZ reporter gene in yeast. Overexpression of OscWRKY1 enhances Arabidopsis resistance towards Pseudomonas syringae pv. tomato Pst DC3000. Upstream activator sequences of PAL and C4H have been identified to contain the conserved W-box cis-element (TTGACC) in both O. sanctum and Arabidopsis. OscWRKY1 was found to interact with W-box cis-element present in the PAL and C4H promoters. Silencing of OscWRKY1 using VIGS resulted in reduced expression of PAL, C4H, COMT, F5H and 4CL transcripts. OscWRKY1 silenced plants exhibit reduced PAL activity, whereas, the overexpression lines of OscWRKY1 in Arabidopsis exhibit increased PAL activity. Furthermore, the metabolite analysis of OscWRKY1 silenced plants showed reduced rosmarinic acid content. These results revealed that OscWRKY1 positively regulates the phenylpropanoid pathway genes leading to the alteration of rosmarinic acid content and enhances the resistance against bacterial pathogen in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cinnamates , Depsides , Digoxigenin/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Ocimum sanctum/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Rosmarinic Acid
7.
Environ Health Insights ; 16: 11786302221096051, 2022.
Article in English | MEDLINE | ID: mdl-35601188

ABSTRACT

This study aimed to determine the physicochemical quality of groundwater and its potential health risk for drinking in Oromia, Ethiopia. The groundwater samples were collected from 17 sampling stations in the dry and wet season in the Sebeta zone, Oromia, from March to August 2020. Metals and physicochemical parameters, and selected heavy metals, such as iron (Fe), copper (Cu), manganese (Mn), chromium (Cr), zinc (Zn), and lead (Pb) were monitored. The data were analyzed using multivariate statistical methods (Pearson's Correlation and T-test). The means seasonal variations were higher in the dry season than in the wet season except for pH and Turbidity. The variation was significant for most parameters except Pb, Zn, chlorine, Total Alkaline, Magnesium Hardness, Calcium Hardness ), and Turbidity. There was a strong and positive correlation between Total dissolved solids (TDS) and Conductivity), (pH and Cr), (T.H. and Magnesium (Mg)), (bicarbonate and Calcium (Ca), (Zn and Turbidity) in the dry season; and (T.H. with Potassium (K), (Pb and Fe); (bicarbonate and T.H.); (Ca and Mg); (Na and T.A.,) in the wet season. The hazard index (H.I.) values in the dry season (HI = 1.331) were higher than in the wet season (HIadults = 0.075). Likewise, the H.I. (dry season) was higher (HIchildren = 1.861) than in the wet season (HIchildren = 0.105). Chronic groundwater exposure at drinking sources in the dry season is a potential health risk to humans in general and is relatively high for children. Urgent management and close monitoring are required for drinking groundwater sources and other nearby residents' safety areas.

8.
Plant Cell Rep ; 41(8): 1651-1671, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35579713

ABSTRACT

KEY MESSAGE: The present review highlights the regulatory roles of microRNAs in plant secondary metabolism and focuses on different bioengineering strategies to modulate secondary metabolite content in plants. MicroRNAs (miRNAs) are the class of small endogenous, essential, non-coding RNAs that riboregulate the gene expression involved in various biological processes in most eukaryotes. MiRNAs has emerged as important regulators in plants that function by silencing target genes through cleavage or translational inhibition. These miRNAs plays an important role in a wide range of plant biological and metabolic processes, including plant development and various environmental response controls. Several important plant secondary metabolites like alkaloids, terpenoids, and phenolics are well studied for their function in plant defense against different types of pests and herbivores. Due to the presence of a wide range of biological and pharmaceutical properties of plant secondary metabolites, it is important to study the regulation of their biosynthetic pathways. The contribution of miRNAs in regulating plant secondary metabolism is not well explored. Recent advancements in molecular techniques have improved our knowledge in understanding the molecular function of genes, proteins, enzymes, and small RNAs involved in different steps of secondary metabolic pathways. In the present review, we have discussed the recent progress made on miRNA biogenesis, its regulation, and highlighted the current research developed in the field of identification, analysis, and characterizations of various miRNAs that regulate plant secondary metabolism. We have also discussed how different bioengineering strategies such as artificial miRNA (amiRNA), endogenous target mimicry, and CRISPR/Cas9 could be utilized to enhance the secondary metabolite production in plants.


Subject(s)
MicroRNAs , RNA, Small Untranslated , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Development , Plants/genetics , Plants/metabolism , RNA, Small Untranslated/metabolism , Secondary Metabolism/genetics
9.
Neurotox Res ; 39(6): 1991-2006, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34529240

ABSTRACT

Angiotensin II receptor type 2 (AT2R) agonists have been known to promote neuroprotection by limiting ischemic insult, neuronal proliferation, and differentiation. Further, AT2R agonists have also been associated with the suppression of neuroinflammation and neurodegeneration. Of note, brain astrocytes play a critical role in these neuroinflammatory and neurodegenerative processes. However, the role of AT2R in astrocytic activation remains elusive. Therefore, this study evaluated the role and molecular mechanism of AT2R agonist CGP42112A (CGP) against Angiotensin II (Ang II)-induced astrocytic activation in primary astrocytes, and in a rat model of hypertension. Here, we demonstrated that AT2R activation by CGP abrogated Ang II-induced astrocytic activation, by mitigating the ROS production, mitochondrial dysfunction, IκB-α degradation, NFκB nuclear translocation, and release of TNF-α in astrocytes. However, AT2R-mediated anti-inflammatory effects were reversed by AT2R antagonist, PD123319 (PD), in both in vitro and in vivo conditions. Mechanistically, AT2R via protein phosphatase-2A (PP2A) abrogated the Ang II-induced NFκB activation, ROS generation, and subsequent astrocytic activation. Importantly, PP2A antagonist, okadaic acid, reversed the anti-inflammatory effects of AT2R in Ang II-stimulated primary astrocytes and in the cortex of hypertensive rats. Thus, the present study suggests that AT2R by activating PP2A inhibits oxidative stress and NFκB activation, thereby preventing the astrocytic pro-inflammatory activation. Therefore, AT2R might be advantageous therapeutic target for neuroinflammatory/neurodegenerative diseases perpetuated by astrocytic activation.


Subject(s)
Angiotensin II Type 2 Receptor Blockers/pharmacology , Astrocytes/drug effects , NF-kappa B/metabolism , Neuroinflammatory Diseases/drug therapy , Oligopeptides/pharmacology , Oxidative Stress/drug effects , Protein Phosphatase 2/metabolism , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 2/metabolism , Signal Transduction/drug effects , Animals , Astrocytes/metabolism , Male , Neuroinflammatory Diseases/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 2/drug effects
10.
Plant Cell Physiol ; 62(5): 894-912, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34009389

ABSTRACT

MicroRNAs (miRNAs) are small non-coding, endogenous RNAs containing 20-24 nucleotides that regulate the expression of target genes involved in various plant processes. A total of 1,429 conserved miRNAs belonging to 95 conserved miRNA families and 12 novel miRNAs were identified from Bacopa monnieri using small RNA sequencing. The Bm-miRNA target transcripts related to the secondary metabolism were further selected for validation. The Bm-miRNA expression in shoot and root tissues was negatively correlated with their target transcripts. The Bm-miRNA cleavage sites were mapped within the coding or untranslated region as depicted by the modified RLM-RACE. In the present study, we validate three miRNA targets, including asparagine synthetase, cycloartenol synthase and ferulate 5 hydroxylase (F5H) and elucidate the regulatory role of Bm-miR172c-5p, which cleaves the F5H gene involved in the lignin biosynthesis. Overexpression (OE) of Bm-miR172c-5p precursor in B. monnieri suppresses F5H gene, leading to reduced lignification and secondary xylem thickness under control and drought stress. By contrast, OE of endogenous target mimics (eTMs) showed enhanced lignification and secondary xylem thickness leading to better physiological response under drought stress. Taken together, we suggest that Bm-miRNA172c-5p might be a key player in maintaining the native phenotype of B. monnieri under control and different environmental conditions.


Subject(s)
Bacopa/genetics , Bacopa/metabolism , Lignin/biosynthesis , MicroRNAs/genetics , Mixed Function Oxygenases/genetics , Droughts , Gene Expression Regulation, Plant , Lignin/genetics , Mixed Function Oxygenases/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Reproducibility of Results , Sequence Analysis, RNA , Xylem/chemistry , Xylem/metabolism
11.
Appl Radiat Isot ; 173: 109736, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33892252

ABSTRACT

Long lived sealed radioactive sources are used for the energy calibration and efficiency determination of counting systems used in the nuclear sector. Using a sulphate bath, a facile electrochemical method was developed by electrodeposition of 54Mn on 5 mm (φ) stainless steel substrates for the preparation of 54Mn sources for such uses. Inactive sources prepared under suitable experimental parameters characterized by XRD revealed that manganese is deposited in oxide form. SEM and EDS analyses of electrodeposited surfaces confirmed uniform distribution of elements and the absence of fractures, flaws, and spatial variations. Cyclic voltammetry (CV) scans provided information about the electrochemical processes involved in the deposition process. Uniform distribution of radioactivity on surface of source was ascertained by autoradiography. Swipe tests of the encapsulated sources confirmed negligible removable surface contamination. The 54Mn sources containing up to 185KBq of 54Mn on stainless steel discs were prepared. These sources along with other longer lived sources were supplied to various users as a package of radiation sources for characterization of gamma counting systems over a wide energy range.

12.
Planta ; 253(5): 89, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33818685

ABSTRACT

MAIN CONCLUSION: BmG10H-1 transcript from B. monnieri was functionally active. BmG10H-1 promoter drives GUS activity in response to MeJA and wounding. BmMYB35 regulates BmG10H-1 transcript by binding to its promoter. Geraniol 10-hydroxylase (G10H) is one of the important regulatory cytochrome P450 monooxygenase, which is involved in the biosynthesis of monoterpene alkaloids. However, G10H is not characterized at the enzymatic or at the regulatory aspect in B. monnieri. In the present study, we have identified two transcripts of BmG10H (BmG10H-1and BmG10H-2) and characterized the methyl jasmonate (MeJA) and wound responsive BmG10H-1 transcript from B. monnieri. BmG10H-1 showed induced expression after 3 h of MeJA and wounding treatment in the shoot. Yeast purified recombinant BmG10H-1 protein is enzymatically active, having Vmax of 0.16 µMsec-1 µg-1 protein and catalyzes the hydroxylation of geraniol to 10-hydroxy geraniol. The BmG10H-1 promoter was isolated by using the genome walking method. BmG10H-1 promoter can drive GUS expression in transgenic Arabidopsis thaliana. GUS activity of MeJA and wound-treated Arabidopsis seedlings were found to be increased as compared to the control untreated seedlings, whereas no GUS activity was found in deleted MeJA responsive and W-box cis-elements. This shows that the BmG10H-1 promoter contains functional MeJA (TGACG) and wound responsive (TGACCT) cis-elements. Further, shoot specific and MeJA responsive recombinant BmMYB35 protein was purified, which binds with the MYB recognition cis-element (TGGTTA) present in the BmG10H-1 promoter and transcriptionally activates the reporter gene in yeast. In conclusion, the characterization of MeJA and wound responsive BmG10H-1 provides novel information about its transcriptional regulation by binding with MYB transcription factor in B. monnieri.


Subject(s)
Acetates/metabolism , Bacopa/genetics , Bacopa/metabolism , Cyclopentanes/metabolism , Cytochrome P-450 Enzyme System/genetics , Genes, Plant/genetics , Oxylipins/metabolism , Bacopa/enzymology , Base Sequence , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics
13.
Brain Res ; 1754: 147261, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33422534

ABSTRACT

Antidepressants are well known to exert their role via upregulation of brain derived neurotrophic factor (BDNF). BDNF has been reported to exerts its neuroprotective effect in rodent and primate models as well as in patients of Alzheimer's disease (AD). The aim of our study was to evaluate the effect of protriptyline (PRT), a tricyclic antidepressant, in streptozotocin (STZ)- induced rat model of AD. Total 10 µl of STZ was injected into each ventricle (1 mg/kg). PRT (10 mg/kg, i.p.) treatment was started 3-day post STZ administration and continued till 21 days. We found that STZ treatment significantly increased pTau, Aß42 and BACE-1 expression, oxidative stress and neurodegeneration in hippocampus and cortex of adult rats. STZ induced impairment in spatial learning and retention memory was associated with increased NFκB and reduced CREB and BDNF expression in cortex and hippocampus. Interestingly, PRT treatment significantly reduced pTau, Aß42 and BACE-1 levels, neurodegeneration, oxidative stress and glial activation, contributing to the improved spatial learning and retention memory in STZ treated rats. Moreover, PRT treatment significantly improved p-ERK/ERK ratio and enhanced BDNF and CREB levels by reducing NFκB and GFAP expression in STZ treated rats. Our data suggest that impaired NFκB and CREB signaling potentially contribute in AD pathogenesis by elevating oxidative stress and neuroinflammation mediated neurodegeneration. Our study has established protriptyline as a multi target molecule in pre-clinical model of AD and further investigations on PRT like molecules could pave way for further development of effective new treatments in neurodegenerative disorders.


Subject(s)
Alzheimer Disease/drug therapy , Oxidative Stress/drug effects , Protriptyline/pharmacology , Spatial Memory/drug effects , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory Disorders/drug therapy , Memory Disorders/metabolism , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Streptozocin/pharmacology
14.
Pediatric Health Med Ther ; 11: 399-407, 2020.
Article in English | MEDLINE | ID: mdl-33117055

ABSTRACT

BACKGROUND: Integrated Management of Neonatal and Childhood Illnesses (IMNCI) is one of the child health programs and it provides an integrated approach and focuses on the well-being of the whole child. Globally, nearly nine million children pass away every year with preventable and treatable conditions. IMNCI program is provided by the health facilities to aid children under five years of age from illness. This study is aimed at assessing the implementation of the IMNCI program in public health centers of Soro District, Hadiya Zone, Southern Ethiopia. METHODS: The implementation of the IMNCI program was studied using a facility-based cross-sectional study design integrating both qualitative and quantitative data collected from 9 public health centers in Soro district, Hadiya Zone, Southern Ethiopia. A total of 390 (92%) caregivers were included in the study by the proportion of under-five outpatient coverage from each public health center. Data were collected through face to face interviewer-administered questionnaires, document review checklist, observation checklist, and in-depth interview guide. RESULTS: Based on agreed criteria resources' availability was 80.11% and judged as fair. Less than 50% of health centers (HCs) had cotrimoxazole and gentamycin. The compliance of health workers was 85.5% and judged as good. Below 85% of prescribed drugs were given correctly for the classified disease. Counseling on medication and follow updates were given for less than 80% of caretakers. The overall satisfaction of clients on IMNCI was 79.5% according to the judging criteria. The caretakers who took less than 30 minutes to reach the health center on foot (AOR=7.7, 95% CI [3.787-15.593]), caretakers who waited for less than 30 minutes to see the health care provider (AOR=2, 95% CI [1.00-3.77]), the caretakers who found prescribed drugs in HCs pharmacy (AOR = 3.7,95% CI [1.91-7.34]), the caretakers who have less than four family size (AOR=2, 95% [1.109-4.061]) were more satisfied in IMNCI services, whereas, caregivers who measured the weight of child were negatively associated with satisfaction (AOR= 0.24, 95% CI [0.13-0.45]). CONCLUSION: This study found that the overall implementation of the Integrated Management of Neonatal and Childhood Illnesses was good. All health centers had trained health workers, ORS, paracetamol, vitamin A, chart booklet, and IMNCI guidelines were available; however, cotrimoxazole, gentamycin, ampicillin, and mebendazole were less abundant drugs in health centers. Further, a large-scale study is required to be conducted in future in other districts to ensure proper implementation of the IMNCI program in Ethiopia.

15.
Cancer Rep (Hoboken) ; 3(4): e1211, 2020 08.
Article in English | MEDLINE | ID: mdl-32794640

ABSTRACT

BACKGROUND: Statistical analysis according to design features and objectives is essential to ensure the validity and reliability of the study findings and conclusions in biomedical research. Heterogeneity in reporting study design elements and conducting statistical analyses is often observed for the same study design and study objective in medical literatures. Sometimes, researchers face a lot of predicaments using appropriate statistical approaches highlighted by methodologists for a specific study design either due to lack of accessibility or understanding of statistical methods or unavailability of checklists related to design and analysis in a concise format. The purpose of this review is to provide the checklist of statistical analysis and methods in biomedical research (SAMBR) to applied researchers. RECENT FINDINGS: We initially identified the important steps of reporting design features that may influence the choice of statistical analysis in biomedical research and essential steps of data analysis of common studies. We subsequently searched for statistical approaches employed for each study design/study objective available in publications and other resources. Compilation of these steps produced SAMBR guidance document, which includes three parts. Applied researchers can use part (A) and part (B) of SAMBR to describe or evaluate research design features and quality of statistical analysis, respectively, in reviewing studies or designing protocols. Part (C) of SAMBR can be used to perform essential and preferred evidence-based data analysis specific to study design and objective. CONCLUSIONS: We believe that the statistical methods checklists may improve reporting of research design, standardize methodological practices, and promote consistent application of statistical approaches, thus improving the quality of research studies. The checklists do not enforce the use of suggested statistical methods but rather highlight and encourage to conduct the best statistical practices. There is a need to develop an interactive web-based application of the checklists for users for its wide applications.


Subject(s)
Biomedical Research , Checklist , Data Interpretation, Statistical , Research Design , Humans , Reproducibility of Results
16.
Plant Sci ; 290: 110291, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31779892

ABSTRACT

A. racemosus is a rich source of pharmacologically active steroidal saponins. Most of the studies are related to its chemistry and pharmacology, but the pathway involved in the biosynthesis of steroidal saponin is not much emphasized. Squalene epoxidase acts as a rate-limiting enzyme in this biosynthesis. In this study, we have selected root specific squalene epoxidase ArSQE from A. racemosus for its characterization. ArSQE was able to complement ergosterol auxotrophy in erg1 yeast mutants. Mutants were sensitive to the antifungal drug terbinafine, whereas ArSQE complementation made them tolerant to the same drug. ArSQE plays a significant role in early germination in transgenic tobacco. The transgenic tobacco seedlings overexpressing ArSQE were tolerant to terbinafine and abiotic stress. Expression analysis of transcripts in ArSQE transgenic lines suggests that it mostly affects ABA, GA, stress, and sterol related functions in transgenic tobacco. Further, root specific MeJA responsive A. racemosus bZIP transcription factors (TFs), ArTGA1 and ArTGA2, were identified that bind to MeJA responsive cis-element present in the promoter region of ArSQE. Characterization of ArSQE of A. racemosus provides new information about its regulation through MeJA responsive bZIP TF along with its role in the development and abiotic stress response in transgenic tobacco.


Subject(s)
Asparagus Plant/physiology , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant , Germination/genetics , Plant Proteins/genetics , Squalene Monooxygenase/genetics , Amino Acid Sequence , Asparagus Plant/enzymology , Asparagus Plant/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Sequence Alignment , Squalene Monooxygenase/metabolism , Stress, Physiological , Nicotiana/genetics , Nicotiana/physiology
18.
Plant Mol Biol ; 100(4-5): 351-365, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31030374

ABSTRACT

KEY MESSAGE: Present review describes the structure, evolution, transport mechanism and physiological functions of SWEETs. Their application using TALENs and CRISPR/CAS9 based genomic editing approach is discussed. Sugars Will Eventually be Exported Transporters (SWEET) proteins were first identified in plants as the novel family of sugar transporters which mediates the translocation of sugars across cell membranes. The SWEET family of sugar transporters is unique in terms of their structure which contains seven predicted transmembrane domains with two internal triple-helix bundles which possibly originate due to prokaryotic gene duplication. SWEETs perform diverse physiological functions such as pollen nutrition, nectar secretion, seed filling, phloem loading, and pathogen nutrition which we have discussed in the present review. We also discuss how transcriptional activator-like effector nucleases (TALENs) and CRISPR/CAS9 genome editing tools are used to engineer SWEET mutants which modulate pathogen resistance in plants and its applications in the field of agriculture. The expression of SWEETs promises to implement insights into many other cellular transport mechanisms. To conclude, the present review highlights the recent aspects which will further develop better understanding of molecular evolution, structure, and function of SWEET transporters in plants.


Subject(s)
Monosaccharide Transport Proteins/physiology , Plant Proteins/physiology , Cell Membrane/metabolism , Disease Resistance , Evolution, Molecular , Gibberellins/metabolism , Models, Molecular , Monosaccharide Transport Proteins/chemistry , Phloem/metabolism , Plant Proteins/chemistry , Plants/metabolism , Plants/microbiology , Protein Domains , Sequence Analysis, Protein
19.
Mol Neurobiol ; 56(4): 3005-3023, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30076526

ABSTRACT

Microglia-induced reactive oxygen species (ROS) production and inflammation play an imperative role in neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). It has been established that angiotensin II type-2 receptor (AT2R) activation is neuroprotective in central nervous system diseases like stroke and AD. However, the involvement of AT2R in NADPH oxidase (NOX)-mediated microglia activation is still elusive. Therefore, the present study investigated the role of AT2R in angiotensin II (Ang II) or Phorbol 12-myristate 13-acetate (PMA)-induced microglia activation in BV2 cells, primary microglia, p47phox knockout (p47KO) microglia, and in vivo. Treatment of microglia with Ang II or PMA induced a significant ROS generation and promoted pro-inflammatory microglia in a NOX-dependent manner. In contrast, AT2R activation by CGP42112A (CGP) inhibited NOX activation, ROS production, and pro-inflammatory microglia activation, while promoting the immunoregulatory microglia. This inhibitory effect of AT2R on NOX and pro-inflammatory activation was attenuated by AT2R antagonist, PD123319. Essentially, NOX inhibition (by DPI) or scavenging cellular ROS (by NAC) or p47KO microglia were immune to Ang II- or PMA-induced pro-inflammatory microglia activation. Mechanistically, AT2R, via activation of protein phosphatase-2A (PP2A), prevented the Ang II- or PMA-induced protein kinase C (PKC) activation and phosphorylation of p47phox, an effect that was reversed by the addition of PP2A inhibitor, Okadaic acid (OA). Importantly, PKC inhibitor, Rottlerin, inhibited the Ang II- or PMA-induced p47phox phosphorylation and ROS generation to the similar extent as AT2R activation. In addition, AT2R activation or p47KO prevented ROS production, pro-inflammatory microglial activation, and sickness behavior in mice model of neuroinflammation. Therefore, the present findings suggested that AT2R, via PP2A-mediated inhibition of PKC, prevents the NOX activation, ROS generation, and subsequent pro-inflammatory activation of microglia.


Subject(s)
Inflammation/pathology , Microglia/metabolism , Microglia/pathology , NADPH Oxidases/metabolism , Protein Kinase C/metabolism , Protein Phosphatase 2/metabolism , Receptor, Angiotensin, Type 2/metabolism , Angiotensin II , Animals , Cell Line , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides , Mice , Mitochondria/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Phosphorylation/drug effects , Protein Kinase C/antagonists & inhibitors , Proteolysis/drug effects , Reactive Oxygen Species/metabolism , Tetradecanoylphorbol Acetate/pharmacology
20.
Dalton Trans ; 47(19): 6787-6799, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29721557

ABSTRACT

Rare earth indates are an interesting class of compounds with rich crystallography. The present study explores the crystallographic phases observed in REInO3 (RE: La-Yb) systems and their dependence on synthesis routes and annealing temperature. All REInO3 compositions were synthesized by a solid state route as well as gel-combustion synthesis (GC) followed by annealing at different temperatures. The systems were well characterized by powder XRD studies and were analysed by Rietveld refinement for the structural parameters. The cell parameters were observed to decrease in accordance with the trend in ionic radii on proceeding from lighter to heavier rare earth ions. Interestingly, the synthesis route and the annealing temperature had a profound bearing on the phase relationships observed in the REInO3 series. The solid state synthesized samples depicted an orthorhombic phase (Pbnm) field for LaInO3 to SmInO3, followed by a hexagonal-type phase (P63cm) for GdInO3 to DyInO3. However, the phase field distribution was greatly influenced upon employing gel-combustion (GC) wherein both single-phasic hexagonal and orthorhombic phase fields were found to shrink. Annealing the GC-synthesized compositions to still higher temperatures (1250 °C) further evolved the phase boundaries. An important outcome of the study is observance of polymorphism in SmInO3 which crystallized in the hexagonal phase when synthesized by GC and orthorhombic phase by solid state synthesis. This reveals the all-important role played by synthesis conditions. The existence and energetics of the two polymorphs have been elucidated and discussed with the aid of theoretical studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...