Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0299771, 2024.
Article in English | MEDLINE | ID: mdl-38593139

ABSTRACT

Niger is highly vulnerable to rainfall variability, often with adverse socioeconomic consequences. This study examined observed subseasonal rainfall variability during Niger's monsoon season (May to September). Using k-means clustering of dekadal (ten-day) rainfall, a typology was developed for the annual evolution of the monsoon season. Year-to-year rainfall variability for each of the first few dekads of the season is modest, but the middle, or peak of the rainy season demonstrates large interannual variability. Clustering analysis of annual timeseries for each dekad of the season revealed two types of monsoon progression. The distinction between the two types is strongly dependent on differences during the latter half of the season. For the first and third ten-day periods in August, and the first ten days in September, the two groups of years are more distinct. These results imply that while reliable prediction of the timing of anomalous onsets will be challenging, due to the relatively narrow range of uncertainty historically, there are opportunities for further exploration of dynamic and or statistical predictors or precursors using this typology that could potentially provide better information for decision-makers, especially with respect to agriculture.


Subject(s)
Agriculture , Rain , Niger , Seasons
2.
Glob Environ Change ; 80: 102677, 2023 May.
Article in English | MEDLINE | ID: mdl-37250477

ABSTRACT

Agricultural production and household food security are hypothesized to play a critical role connecting climate change to downstream effects on women's health, especially in communities dependent on rainfed agriculture. Seasonal variability in agriculture strains food and income resources and makes it a challenging time for households to manage a pregnancy or afford a new child. Yet, there are few direct assessments of the role locally varying agricultural quality plays on women's health, especially reproductive health. In this paper we build on and integrate ideas from past studies focused on climate change and growing season quality in low-income countries with those on reproductive health to examine how variation in local seasonal agricultural quality relates to childbearing goals and family planning use in three countries in sub-Saharan Africa: Burkina Faso, Kenya, and Uganda. We use rich, spatially referenced data from the Performance Monitoring for Action (PMA) individual surveys with detailed information on childbearing preferences and family planning decisions. Building on recent advances in remote monitoring of seasonal agriculture, we construct multiple vegetation measures capturing different dimensions of growing season conditions across varying time frames. Results for the Kenya sample indicate that if the recent growing season is better a woman is more likely to want a child in the future. In Uganda, when the growing season conditions are better, women prefer to shorten the time until their next birth and are also more likely to discontinue using family planning. Additional analyses reveal the importance of education and birth spacing in moderating these findings. Overall, our findings suggest that, in some settings, women strategically respond to growing season conditions by adjusting fertility aspirations or family planning use. This study also highlights the importance of operationalizing agriculture in nuanced ways that align with women's lives to better understand how women are impacted by and respond to seasonal climate conditions.

3.
Sci Data ; 9(1): 375, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773449

ABSTRACT

CHIRPS-GEFS is an operational data set that provides daily bias-corrected forecasts for next 1-day to ~15-day precipitation totals and anomalies at a quasi-global 50-deg N to 50-deg S extent and 0.05-degree resolution. These are based on National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System version 12 (GEFS v12) precipitation forecasts. CHIRPS-GEFS forecasts are compatible with Climate Hazards center InfraRed Precipitation with Stations (CHIRPS) data, which is actively used for drought monitoring, early warning, and near real-time impact assessments. A rank-based quantile matching procedure is used to transform GEFS v12 "reforecast" and "real-time" forecast ensemble means to CHIRPS spatial-temporal characteristics. Matching distributions to CHIRPS makes forecasts better reflect local climatology at finer spatial resolution and reduces moderate-to-large forecast errors. As shown in this study, having a CHIRPS-compatible version of the latest generation of NCEP GEFS forecasts enables rapid assessment of current forecasts and local historical context. CHIRPS-GEFS effectively bridges the gap between observations and weather predictions, increasing the value of both by connecting monitoring resources (CHIRPS) with interoperable forecasts.

4.
PLoS One ; 16(1): e0242883, 2021.
Article in English | MEDLINE | ID: mdl-33471787

ABSTRACT

Since 2015, Sub-Saharan Africa (SSA) has experienced an unprecedented rise in acute food insecurity (AFI), and current projections for the year 2020 indicate that more than 100 million Africans are estimated to receive emergency food assistance. Climate-driven drought is one of the main contributing factors to AFI, and timely and appropriate actions can be taken to mitigate impacts of AFI on lives and livelihoods through early warning systems. To support this goal, we use observations of peak Normalized Difference Vegetation Index (NDVI) as an indicator of seasonal drought conditions following a rainy season to show that delays in the onset of the rainy season (onset date) can be an effective early indicator of seasonal drought conditions. The core of this study is an evaluation of the relationship of the onset dates and peak NDVI, stratified by AFI risks, calculated using AFI reports by the United States Agency of International Development (USAID)-funded Famine Early Warning Systems Network (FEWS NET). Several parts of SSA, mostly located in East Africa (EA), reported the "Crisis" phase of AFI-requiring emergency food assistance-at least one-third of the time between April 2011 to present. The results show that the onset date can effectively explain much of the interannual variability in peak NDVI in the regions with the highest AFI risk level, particularly in EA where the median of correlation (across all the Administrative Unit 2) varies between -0.42 to -0.68. In general, an onset date delay of at least 1 dekad (10 days) increases the likelihood of seasonal drought conditions. In the regions with highest risks of AFI, an onset delay of just 1 dekad doubles the chance of the standardized anomaly of peak NDVI being below -1, making a -1 anomaly the most probable outcome. In those regions, a 2-dekads delay in the onset date is associated with a very high probability (50%) of seasonal drought conditions (-1 standardized anomaly of NDVI). Finally, a multivariate regression analysis between standardized anomaly and onset date anomaly further substantiates the negative impacts of delay in onset date on NDVI anomaly. This relationship is statistically significant over the SSA as a whole, particularly in the EA region. These results imply that the onset date can be used as an additional critical tool to provide alerts of seasonal drought development in the most food-insecure regions of SSA. Early warning systems using onset date as a tool can help trigger effective mid-season responses to save human lives, livestock, and livelihoods, and, therefore, mitigate the adverse impacts of drought hazards.


Subject(s)
Droughts , Food Security , Rain , Seasons , Africa South of the Sahara , Geography , Multivariate Analysis , Plants , Probability , Regression Analysis , Risk Factors
5.
Sci Data ; 4: 170012, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28195575

ABSTRACT

Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET's operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.

6.
Int J Appl Earth Obs Geoinf ; 48: 96-109, 2016 Jun.
Article in English | MEDLINE | ID: mdl-29599664

ABSTRACT

To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

7.
Sci Data ; 2: 150066, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26646728

ABSTRACT

The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.

SELECTION OF CITATIONS
SEARCH DETAIL
...