Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 454(1-2): 123-138, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30390174

ABSTRACT

Natural products from medicinal plants have always attracted a lot of attention due to their diverse and interesting therapeutic properties. We have employed the principles of green chemistry involving isomerization, coupling and condensation reaction to synthesize a class of compounds derived from eugenol, a naturally occurring bioactive phytophenol. The compounds were characterized structurally by 1H-, 13C-NMR, FT-IR spectroscopy and mass spectrometry analysis. The purity of compounds was detected by HPLC. The synthesized compounds exhibited anti-cancer activity. A 10-12-fold enhancement in efficiency of drug molecules (~ 1 µM) was observed when delivered with graphene oxide (GO) as a nanovehicle. Our data suggest cell death via apoptosis in a dose-dependent manner due to increase in calcium levels in specific cancer cell lines. Interestingly, the benzoxazine derivatives of eugenol with GO nanoparticle exhibited enhanced therapeutic potential in cancer cells. In addition to anti-cancer effect, we also observed significant role of these derivatives on parasite suggesting its multi-pharmacological capability.


Subject(s)
Apoptosis , Benzoxazines/pharmacology , Drug Carriers , Eugenol/pharmacology , Graphite , Nanoparticles/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Line, Tumor , HeLa Cells , Humans , MCF-7 Cells , Neoplasms/physiopathology
2.
Bioorg Med Chem Lett ; 28(9): 1629-1637, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29615339

ABSTRACT

Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na+ levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490 nM from 17.54 µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action.


Subject(s)
Antimalarials/pharmacology , Benzoxazines/pharmacology , Homeostasis/drug effects , Phenols/pharmacology , Plasmodium falciparum/drug effects , Sodium/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Dose-Response Relationship, Drug , Membrane Potential, Mitochondrial/drug effects , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Phenols/chemistry , Plasmodium falciparum/growth & development , Sodium/chemistry , Structure-Activity Relationship
3.
ACS Omega ; 2(7): 3070-3082, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-30023683

ABSTRACT

Graphene oxide (GO) is a promising and remarkable nanomaterial that exhibits antimicrobial activity due to its specific surface-interface interactions. In the present work, for the first time, we have reported the antibacterial activity of GO-coated surfaces prepared by two different methods (Hummers' and improved, i.e., GOH and GOI) against bacterial biofilm formation. The bacterial toxicity of the deposited GO-coated surfaces was investigated for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) models of bacteria. The mechanism of inhibition is different on the coated surface than that in suspension, as determined by measurement of the percentage inhibition of biofilm formation, Ellman's assay, and colony forming unit (CFU) studies. The difference in the nature, degree of oxidative functionalities, and size of the synthesized GO nanoparticles mitigates biofilm formation. To better understand the antimicrobial mechanism of GO when coated on surfaces, we were able to demonstrate that beside reactive oxygen species-mediated oxidative stress, the physical properties of the GO-coated substrate effectively inactivate bacterial cell proliferation, which forms biofilms. Light and atomic force microscopy (AFM) images display a higher inhibition in the proliferation of planktonic cells in Gram-negative bacteria as compared to that in Gram-positive bacteria. The existence of a smooth surface with fewer porous domains in GOI inhibits biofilm formation, as demonstrated by optical microscopy and AFM images. The oxidative stress was found to be lower in the coated surface as compared to that in the suspensions as the latter enables exposure of both a large fraction of the active edges and functionalities of the GO sheets. In suspension, GOH is selective against S. aureus whereas GOI showed inhibition toward E. coli. This study provides new insights to better understand the bactericidal activity of GO-coated surfaces and contributes to the design of graphene-based antimicrobial surface coatings, which will be valuable in biomedical applications.

4.
Sci Rep ; 6: 25207, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27121089

ABSTRACT

A sulfur-rich copolymer, poly(S-r-C-a) has been synthesized via a sustainable route, showing the utility of two major industrial wastes- elemental sulfur (petroleum waste) and cardanol (agro waste), to explore its potential as cathode material for Li-S batteries. The sulfur-rich copolymer exhibited a reduction in the active material dissolution into the electrolyte and a low self-discharge rate behavior during the rest time compared to an elemental sulfur cathode, indicating the chemical confinement of sulfur units. The presence of organosulfur moieties in copolymer suppress the irreversible deposition of end-discharge products on electrode surfaces and thus improve the electrochemical performances of Li-S batteries. This sulfur copolymer offered a reversible capacity of 892 mA h g(-1) at 2nd cycle and maintained the capacity of 528 mA h g(-1) after 50 cycles at 200 mA g(-1). Reduced graphene oxide (rGO) prepared via a sustainable route was used as a conductive filler to extract the better electrochemical performances from this sulfur copolymer. Such sustainable origin batteries prepared via economically viable showed an improved specific capacity of ~975 mA h g(-1) after 100 cycles at 200 mA g(-1) current rate with capacity fading of 0.15% per cycle and maintained a stable performance over 500 cycles at 2000 mA g(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...