Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4007, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740805

ABSTRACT

Bimetallic catalysts combining precious and earth-abundant metals in well designed nanoparticle architectures can enable cost efficient and stable heterogeneous catalysis. Here, we present an interaction-driven in-situ approach to engineer finely dispersed Ni decorated Pt nanoparticles (1-6 nm) on perovskite nanofibres via reduction at high temperatures (600-800 oC). Deposition of Pt (0.5 wt%) enhances the reducibility of the perovskite support and promotes the nucleation of Ni cations via metal-support interaction, thereafter the Ni species react with Pt forming alloy nanoparticles, with the combined processes yielding smaller nanoparticles that either of the contributing processes. Tuneable uniform Pt-Ni nanoparticles are produced on the perovskite surface, yielding reactivity and stability surpassing 1 wt.% Pt/γ-Al2O3 catalysts for CO oxidation. This approach heralds the possibility of in-situ fabrication of supported bimetallic nanoparticles with engineered compositional distributions and performance.

2.
Sci Adv ; 9(17): eadf4863, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115932

ABSTRACT

To achieve a sustainable society, CO2 emissions must be reduced and efficiency of energy systems must be enhanced. The polymer electrolyte membrane fuel cell (PEMFC) has zero CO2 emissions and high effectiveness for various applications. A well-designed membrane electrolyte assembly (MEA) composed of electrode layers of effective materials and structure can alter the performance and durability of PEMFC. We demonstrate an efficient electrode deposition method through a well-designed carbon single web with a porous 3D web structure that can be commercially adopted. To achieve excellent electrochemical properties, active Pt nanoparticles are controlled by a nanoglue effect on a highly graphitized carbon surface. The developed MEA exhibits a notable maximum power density of 1082 mW/cm2 at 80°C, H2/air, 50% RH, and 1.8 atm; low cathode loading of 0.1 mgPt/cm2; and catalytic performance decays of only 23.18 and 13.42% under commercial-based durability protocols, respectively, thereby achieving all desirables for commercial applications.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432308

ABSTRACT

Here, a composite nanoparticle with an acid-base bifunctional structure has been reported for the transesterification of rapeseed oil to produce biodiesel. Triazole-PWA (PWA = 12-tungstophosphoric acid) composite materials with a hexahedral structure are produced using the precipitation method, showing the average particle diameters of 200-800 nm. XPS and FT-IR analyses indicate well-defined chemical bonding of triazole moieties to the PWA. The functionalization and immobilization of PWAs are investigated due to strong interactions with triazole, which significantly improves the thermal stability and even surface area of the heteropoly acid. Furthermore, various ratios of triazole and PWAs are examined using NH3-TPD and CO2-TPD to optimize the bi-functionality of acidity and basicity. The prepared nanomaterials are evaluated during the transesterification of rapeseed oil with methanol to analyze the effect of triazole addition to PWAs according to the different ratios. Overall, the bifunctional triazole-PWA composite nanoparticles exhibit higher fatty acid methyl ester (FAME) conversions than pure PWA nanoparticles. The optimized catalyst with a triazole:PWA ratio of 6:1 exhibits the best FAME-conversion performance due to its relatively large surface area, balance of acidity, and strong basicity from the well-designed chemical nano-structure.

4.
Nanomaterials (Basel) ; 12(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35407348

ABSTRACT

Nano-composite filler has received attention for the application to high temperature and low humidity polymer electrolyte membrane (PEM) in fuel cell systems. Heteropolyacids (HPAs) are one of the most attractive materials because of their conductive and thermally stable properties, but have practical limitations due to their high solubility. We investigated the stabilization of HPA on imidazole modified mesoporous silica as a nano-composite filler. The role of mesoporous silica as a support for imidazole and the distribution of chemically bonded HPA on the surface were both confirmed through physical and chemical analysis. The developed nano-composite was utilized to a PEM as a proton conducting filler, cast with commercial AquivionTM solution. Changing the HPA: imidazole ratio and HPA wt%, the composite membrane of Im10/PWA6/Si-MCM-41 (PWA 10 wt%) resulted in higher proton conductivity compared to the non-modified membrane at all operation conditions, especially at high temperature (140 °C) and low relative humidity (RH 10%), with values of 0.3530 and 0.0241 S/m, respectively. A single cell test at H2/Air also showed the effect of adding the nano-composite filler at a wide range of temperatures, which outperformed a single cell with a pristine membrane even at an extremely low humidity condition.

5.
ACS Appl Mater Interfaces ; 14(10): 12140-12148, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35238550

ABSTRACT

The strong bonding at the interface between the metal and the support, which can inhibit the undesirable aggregation of metal nanoparticles and carbon deposition from reforming of hydrocarbon, is well known as the classical strong metal-support interaction (SMSI). SMSI of nanocatalysts was significantly affected by heat treatment and reducing conditions during catalyst preparation.the heat treatment and reduction conditions during catalyst preparation. SMSI can be weakened by the decrement of metal-doped sites in the supporting oxide and can often deactivate catalysts by the encapsulation of active sites through these processes. To retain SMSI near the active sites and to enhance the catalytic activity of the nanocatalyst, it is essential to increase the number of surficial metal-doped sites between nanometal and the support. Herein, we propose a mild reduction process using dry methane (CH4/CO2) gas that suppresses the aggregation of nanoparticles and increases the exposed interface between the metal and support, Ni and cerium oxide. The effects of mild reduction on the chemical state of Ni-cerium oxide nanocatalysts were specifically investigated in this study. As a result, mild reduction led to form large amounts of the Ni3+ phase at the catalyst surface of which SMSI was significantly enhanced. It can be easily fabricated while the dry reforming of methane (DRM) reaction is on stream. The superior performance of the catalyst achieved a considerably high CH4 conversion rate of approximately 60% and stable operation up to 550 h at a low temperature, 600 °C.

6.
Sci Rep ; 9(1): 3175, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30816119

ABSTRACT

First ever transparent bendable secondary zinc-air batteries were fabricated. Transparent stainless-steel mesh was utilized as the current collector for the electrodes due to its reliable mechanical stability and electrical conductivity. After which separate methods were used to apply the active redox species. For the preparation of the anode, zinc was loaded by an electroplating process to the mesh. For the cathode, catalyst ink solution was spray coated with an airbrush for desired dimensions. An alkaline gel electrolyte layer was used for the electrolyte. Microscale domain control of the materials becomes a crucial factor for fabricating transparent batteries. As for the presented cell, anionic exchange polymer layer has been uniquely incorporated on to the cathode mesh as the separator which becomes a key procedure in the fabrication process for obtaining the desired optical properties of the battery. The ionic resin is applied in a fashion where controlled voids exist between the openings of the grid which facilitates light passage while guaranteeing electrical insulation between the electrodes. Further analysis correlates the electrode dimensions to the transparency of the system. Recorded average light transmittance is 48.8% in the visible light region and exhibited a maximum power density of 9.77 mW/cm2. The produced battery shows both transparent and flexible properties while maintaining a stable discharge/charge operation.

7.
RSC Adv ; 9(11): 6320-6327, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-35517288

ABSTRACT

Methanol is an attractive energy source due to its portability and thermodynamic coke resistance by its oxygen content. In order to operate dry methanol fuel low temperature solid oxide fuel cells (LT-SOFCs), it is important to solve the problems of carbon formation and its low performance. In this study, copper impregnation was selected to decrease the carbon deposition and enhance the performance at low temperature. The interaction of copper, ceria and nickel improves CO oxidation capacity which improves coke tolerance and nano-sized nickel copper alloys improved durability and catalytic performance under methanol feed. It markedly amplified the performance about 0.4 W cm-2 at 550 °C with the durable operation at 1.4 A cm-2 over 50 h. Loading copper nanoparticles is promising method for Ni-ceria based LT-SOFC using methanol fuel with high performance and stable operation.

8.
ACS Nano ; 12(7): 6819-6829, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29966089

ABSTRACT

Well-designed electronic configurations and structural properties of electrocatalyst alter the activity, stability, and mass transport for enhanced catalytic reactions. We introduce a nanofibrous oxide-carbon composite by an in situ method of carbon nanofiber (CNF) growth by highly dispersed Ni nanoparticles that are exsoluted from a NiTiO3 surface. The nanofibrous feature has a 3D web structure with improved mass-transfer properties at the electrode. In addition, the design of the CNF/TiO2 support allows for complex properties for excellent stability and activity from the TiO2 oxide support and high electric conductivity through the connected CNF, respectively. Developed CNF/TiO2-Pt nanofibrous catalyst displays exemplary oxygen-reduction reaction (ORR) activity with significant improvement of the electrochemical surface area. Moreover, exceptional resistance to carbon corrosion and Pt dissolution is proven by durability-test protocols based on the Department of Energy. These results are well-reflected to the single-cell tests with even-better performance at the kinetic zone compared to the commercial Pt/C under different operation conditions. CNF/TiO2-Pt displays an enhanced active state due to the strong synergetic interactions, which decrease the Pt d-band vacancy by electron transfer from the oxide-carbon support. A distinct reaction mechanism is also proposed and eventually demonstrates a promising example of an ORR electrocatalyst design.

9.
ACS Appl Mater Interfaces ; 8(39): 26298-26308, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27607425

ABSTRACT

Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

10.
Chem Commun (Camb) ; 52(71): 10731-4, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27470485

ABSTRACT

A hexagonal perovskite BaNiO3 with unusually high-valence nickel(iv) was synthesized under atmospheric and low-temperature conditions by an ethylenediamine-derived wet-chemical route. Secondary phases disappeared with increase in the pH value, and the single-phase BaNiO3 was successfully synthesized at pH 10. The specific surface area was ∼32 m(2) g(-1), which is significantly enhanced compared to the BaNiO3 (0.3 m(2) g(-1)) synthesized by flux-mediated crystal growth. The BaNiO3 was used as an oxygen-evolution reaction (OER) catalyst, and the specific mass activity was ∼5 times higher than that of the BaNiO3 synthesized by flux-mediated crystal growth. As a result, the ethylenediamine-derived sol-gel synthesis could be a simple technique to prepare crystalline compounds such as perovskites and spinels, with unusually high-valence transition metals.

11.
J Am Chem Soc ; 138(10): 3541-7, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26910187

ABSTRACT

Establishment of a sustainable energy society has been strong driving force to develop cost-effective and highly active catalysts for energy conversion and storage devices such as metal-air batteries and electrochemical water splitting systems. This is because the oxygen evolution reaction (OER), a vital reaction for the operation, is substantially sluggish even with precious metals-based catalysts. Here, we show for the first time that a hexagonal perovskite, BaNiO3, can be a highly functional catalyst for OER in alkaline media. We demonstrate that the BaNiO3 performs OER activity at least an order of magnitude higher than an IrO2 catalyst. Using integrated density functional theory calculations and experimental validations, we unveil that the underlying mechanism originates from structural transformation from BaNiO3 to BaNi(0.83)O(2.5) (Ba6Ni5O15) over the OER cycling process.

12.
Sci Rep ; 5: 16394, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26552839

ABSTRACT

Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 µm in size, which exhibited a very high power density of 1906 mW/cm(2) at 75 °C and Pt loading of 0.4 mg/cm(2) with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm(2) with an outstanding performance of 1555 mW/cm(2) and even at air/low humidity operations.

13.
Nat Commun ; 5: 4045, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24893929

ABSTRACT

Low-temperature operation is necessary for next-generation solid oxide fuel cells due to the wide variety of their applications. However, significant increases in the fuel cell losses appear in the low-temperature solid oxide fuel cells, which reduce the cell performance. To overcome this problem, here we report Gd0.1Ce0.9O1.95-based low-temperature solid oxide fuel cells with nanocomposite anode functional layers, thin electrolytes and core/shell fibre-structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Gd0.1Ce0.9O1.95 cathodes. In particular, the report describes the use of the advanced electrospinning and Pechini process in the preparation of the core/shell-fibre-structured cathodes. The fuel cells show a very high performance of 2 W cm(-2) at 550 °C in hydrogen, and are stable for 300 h even under the high current density of 1 A cm(-2). Hence, the results suggest that stable and high-performance solid oxide fuel cells at low temperatures can be achieved by modifying the microstructures of solid oxide fuel cell components.

14.
Sci Rep ; 4: 4879, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24824876

ABSTRACT

Long admired for informational role and recognition function in multidisciplinary science, DNA nanohybrids have been emerging as ideal materials for molecular nanotechnology and genetic information code. Here, we designed an optical machine-readable DNA icon on microarray, Avatar DNA, for automatic identification and data capture such as Quick Response and ColorZip codes. Avatar icon is made of telepathic DNA-DNA hybrids inscribed on chips, which can be identified by camera of smartphone with application software. Information encoded in base-sequences can be accessed by connecting an off-line icon to an on-line web-server network to provide message, index, or URL from database library. Avatar DNA is then converged with nano-bio-info-cogno science: each building block stands for inorganic nanosheets, nucleotides, digits, and pixels. This convergence could address item-level identification that strengthens supply-chain security for drug counterfeits. It can, therefore, provide molecular-level vision through mobile network to coordinate and integrate data management channels for visual detection and recording.


Subject(s)
DNA/chemistry , Microarray Analysis/methods , Nanotechnology/methods , Software
15.
Sci Rep ; 3: 2902, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24104596

ABSTRACT

Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2-rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. Herein, the three different hollow fiber catalysts networked with perovskite nanoparticles, LaCr(0.8)Ru(0.2)O3, LaCr(0.8)Ru(0.1)Ni(0.1)O3, and LaCr(0.8)Ni(0.2)O3 were prepared by using activated carbon fiber as a sacrificial template for H2 production from heavy gas oil reforming. The most important findings were arrived at: (i) catalysts had hollow fibrous architectures with well-crystallized structures, (ii) hollow fibers had a high specific surface area with a particle size of ≈50 nm, and (iii) the Ru substituted ones showed high efficiency for H2 production with substantial durability under high concentrations of S, N, and aromatic compounds.

16.
J Nanosci Nanotechnol ; 13(5): 3307-12, 2013 May.
Article in English | MEDLINE | ID: mdl-23858849

ABSTRACT

Polycabosilane (PCS) could be spun to form fiber web by electrospinning PCS solution in 30% dimethylformide (DMF)/toluene solvent at 25 kV. The electrospun web is stabilized at 200 degrees C for 1 hour to connect fibers by softening PCS webs and pyrolysed to synthesize silicon carbide (SiC) webs at 1800 degrees C. The pyrolysis at 1800 degrees C increased the SiC crystal size to 45 nm from 3 nm at 1300 degrees C. However, the pyrolysis at 1800 degrees C forms pores on the surface of SiC fibers due to oxygen evaporation generated during thermals curing. SiC/phenol composite webs could be fabricated by infiltration of phenol resin and hot pressing. The thermal conductivity measurement indicates that higher SiC fibers filler contents increase the thermal conductivity up to 1.9 W/mK for 40% fraction of filler contents from 0.5 W/mK for 20% fraction of filler.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Electrochemistry/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Phenols/chemistry , Resins, Synthetic/chemistry , Silicon Compounds/chemistry , Materials Testing , Particle Size , Rotation , Temperature , Thermal Conductivity
17.
J Nanosci Nanotechnol ; 12(7): 5669-72, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966630

ABSTRACT

A platinum nanoparticle-reduced graphene oxide (Pt-RGO) nanohybrid for proton exchange membrane fuel cell (PEMFC) application was successfully prepared. The Pt nanoparticles (Pt NPs) were deposited onto chemically converted graphene nanosheets via ethylene glycol (EG) reduction. According to the powder X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) analysis, the face-centered cubic Pt NPs (3-5 nm in diameter) were homogeneously dispersed on the RGO nanosheets. The electrochemically active surface area and PEMFC power density of the Pt-RGO nanohybrid were determined to be 33.26 m2/g and 480 mW/cm2 (maximum values), respectively, at 75 degrees C and at a relative humidity (RH) of 100% in a single-cell test experiment.

18.
J Nanosci Nanotechnol ; 11(1): 382-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21446460

ABSTRACT

Sepiocite, a synthetic sepiolite-like nanoclay, was derived from hydrotalcite-like Mg2Al(CO3)0.5-layered double hydroxide (LDH) under phase transformation at 270 +/- 3 degrees C. The crystal structure of sepiocite is conceptually very similar to that of sepiolite derived from montmorillonite clay because sepiocite is formed through the alternation of the blocks and tunnels along the crystallographic c-axis, with a partial dehydroxylation of the octahedral Mg-(OH)-Al configuration into tetrahedral ones. Three important findings regarding sepiocite were arrived at: (i) its high specific surface area of 128.25 m2/g with an average particle size of 200 nm, which is approimately equal to 3.5 times larger than the specific surface area of the pristine LDH (34.21 m2/g); (ii) its non-swelling property; and (iii) its strongly reduced anion-exchange capacity.


Subject(s)
Aluminum Hydroxide/chemistry , Hydroxides/chemistry , Magnesium Hydroxide/chemistry , Magnesium Silicates/chemistry , Nanostructures/chemistry , Bentonite , Microscopy, Electron, Transmission , Nanostructures/ultrastructure , Particle Size , Powder Diffraction
19.
J Nanosci Nanotechnol ; 11(1): 413-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21446466

ABSTRACT

Ferulic acid (FA), an organic UV absorber and free radical scavenger, was intercalated into an inorganic zinc basic salt (ZBS) matrix to prepare a UV screening material. FA molecules were vertically oriented bilayer in the ZBS lattice with an expansion of approximately 22.7 angstroms along the c-axis. The FA-ZBS nanohybrid exhibited a superior UV-A approximately UV-B screening ability and an antioxidant activity that was comparable to that of a pure FA molecule. The in vitro release test showed the biphasic release of the FA molecules from the FA-ZBS nanohybrid that consisted of an initial burst, followed by a slow and sustained release.


Subject(s)
Coumaric Acids/chemistry , Nanocomposites/chemistry , Nanocomposites/radiation effects , Sunscreening Agents/chemistry , Zinc/chemistry , Biphenyl Compounds/chemistry , Delayed-Action Preparations , Drug Stability , Picrates/chemistry , Powder Diffraction , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Ultraviolet Rays
20.
J Am Chem Soc ; 132(47): 16735-6, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20845909

ABSTRACT

A chemically well-defined Bio Core@Inorganic Shell nanohybrid, which consists of rationally designed DNA molecule core with a size of ∼100 nm and spherical inorganic nanoshell with an overall thickness of ∼10 nm reassembled with exfoliated layered metal hydroxide (MH nanosheets), is prepared. The DNA encapsulation and its release, due to the pH-dependent solubility of the MH nanoshell, plays a crucial role in maximizing the stability of base sequence-manipulated and probe-functionalized DNA molecules with designed information. The present DNA Core@MH Shell nanohybrid can provide wide bioinspired applications converged with nanotechnology, such as an advanced gene delivery system and a biomedical diagnostics, tracing/collection/sensing system for DNA-based information.


Subject(s)
DNA/chemistry , Hydroxides/chemistry , Nanoshells/chemistry , Metals/chemistry , Microscopy , Models, Molecular , Nucleic Acid Conformation , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...