Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 8645, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32457477

ABSTRACT

The principal possibility to grow layered double hydroxide (LDH) at ambient pressure on plasma electrolytic oxidation (PEO) treated magnesium alloy AZ91 in the presence of chelating agents is demonstrated for the first time. It avoids hydrothermal autoclave conditions, which strongly limit wide industrial application of such coating systems, and the presence of carbonate ions in the electrolyte, which lead to the formation of "passive" non-functionalizable LDH. A combination of chelating agents (sodium diethylenetriamine-pentaacetate (DTPA) and salicylate) were introduced to the treatment solution. The role of each additive and the influence of treatment bath composition on the LDH formation processes are discussed. A synergistic effect of DTPA and salicylate during LDH formation is discovered and its possible explanation is proposed.

2.
Sci Rep ; 8(1): 16409, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30401953

ABSTRACT

In situ formation of layered double hydroxides (LDH) on metallic surfaces has recently been considered a promising approach for protective conversion surface treatments for Al and Mg alloys. In the case of Mg-based substrates, the formation of LDH on the metal surface is normally performed in autoclave at high temperature (between 130 and 170 °C) and elevated pressure conditions. This hampers the industrial application of MgAl LDH to magnesium substrates. In this paper, the growth of MgAl LDH conversion coating directly on magnesium alloy AZ91 at ambient conditions (25 °C) or elevated temperatures is reported in carbonate free electrolyte for the first time. The direct LDH synthesis on Mg alloys is enabled by the presence of organic chelating agents (NTA and EDTA), which control the amount of free and/or hydroxyl bound Mg2+ and Al3+ in the solution. The application of the chelating agents help overcoming the typical technological limitations of direct LDH synthesis on Mg alloys. The selection of chelators and the optimization of the LDH treatment process are supported by the analysis of the thermodynamic chemical equilibria.

SELECTION OF CITATIONS
SEARCH DETAIL
...