Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
ACS Med Chem Lett ; 14(12): 1692-1699, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116445

ABSTRACT

We have developed a chiral route toward the synthesis of muscarinic M4 agonists that was enabled by the biocatalytic synthesis of the key spirocyclic diamine building blocks 10 and 12. Using these bifunctional compounds we were able to optimize a synthetic sequence toward a collection of advanced intermediates for further elaboration. These advanced intermediates were then used as starting points for early medicinal chemistry and the identification of selective M1/M4 agonists.

2.
J Med Chem ; 63(23): 14425-14447, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33140646

ABSTRACT

This article summarizes the evolution of the screening deck at the Novartis Institutes for BioMedical Research (NIBR). Historically, the screening deck was an assembly of all available compounds. In 2015, we designed a first deck to facilitate access to diverse subsets with optimized properties. We allocated the compounds as plated subsets on a 2D grid with property based ranking in one dimension and increasing structural redundancy in the other. The learnings from the 2015 screening deck were applied to the design of a next generation in 2019. We found that using traditional leadlikeness criteria (mainly MW, clogP) reduces the hit rates of attractive chemical starting points in subset screening. Consequently, the 2019 deck relies on solubility and permeability to select preferred compounds. The 2019 design also uses NIBR's experimental assay data and inferred biological activity profiles in addition to structural diversity to define redundancy across the compound sets.


Subject(s)
Small Molecule Libraries/chemistry , Drug Design , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Small Molecule Libraries/pharmacology
3.
J Med Chem ; 63(22): 13578-13594, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32910655

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also plays an important role in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein as well as a potential immunomodulator, controlling SHP2 activity is of high therapeutic interest. As part of our comprehensive program targeting SHP2, we identified multiple allosteric binding modes of inhibition and optimized numerous chemical scaffolds in parallel. In this drug annotation report, we detail the identification and optimization of the pyrazine class of allosteric SHP2 inhibitors. Structure and property based drug design enabled the identification of protein-ligand interactions, potent cellular inhibition, control of physicochemical, pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine (1), a highly potent, selective, orally efficacious, and first-in-class SHP2 inhibitor currently in clinical trials for cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Antineoplastic Agents/therapeutic use , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Macaca fascicularis , Mice , Neoplasms/drug therapy , Neoplasms/pathology , Rats , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
4.
Aliment Pharmacol Ther ; 51(2): 253-260, 2020 01.
Article in English | MEDLINE | ID: mdl-31642558

ABSTRACT

BACKGROUND: Acute upper gastrointestinal bleeding (UGIB) remains a major cause of hospital admission worldwide. The recent UK National Confidential Enquiry into Patient Outcome and Death (NCEPOD) report on severe gastrointestinal bleeding used the Shock Index to assess bleeding severity and found an association between Shock Index and mortality. However, this has never been prospectively validated as a predictor of outcome in UGIB. AIMS: To compare the Shock Index with existing pre-endoscopic UGIB risk scores in predicting outcomes after UGIB METHODS: In an international, prospective study of 3012 consecutive patients with UGIB, we compared the Shock Index with existing scores including the Glasgow Blatchford score (GBS), admission Rockall score, AIMS65, and the newly described "ABC" score. Pre-determined endpoints were need for major (≥4 units red cells) transfusion, need for endoscopic therapy and 30-day mortality. RESULTS: The Shock Index was inferior to the GBS in predicting need for major transfusion (area under the receiver operator characteristic curve [AUROC] 0.655 vs 0.836, P < 0.001) and need for endotherapy (AUROC 0.606 vs 0.747, P < 0.001). The Shock Index was inferior to all other scores for 30-day mortality: for example, AUROC 0.611 vs 0.863 for ABC score (P < 0.001). Adding the Shock Index to the ABC score did not improve accuracy of the ABC score in predicting mortality (AUROC 0.864 vs 0.863, P = 0.95). CONCLUSION: The Shock Index performed poorly with AUROCs <0.66 and was inferior to existing pre-endoscopy scores at predicting major clinical endpoints after UGIB. We found no clear evidence that the Shock Index is clinically useful at predicting outcomes in UGIB. [Correction added on 20 December 2019, after first online publication: Summary section has been changed for clarification.].


Subject(s)
Gastrointestinal Hemorrhage/diagnosis , Gastrointestinal Hemorrhage/mortality , Severity of Illness Index , Shock/diagnosis , Upper Gastrointestinal Tract/blood supply , Adult , Aged , Aged, 80 and over , Area Under Curve , Blood Transfusion/mortality , Blood Transfusion/statistics & numerical data , Cohort Studies , Endoscopy, Gastrointestinal , Female , Gastrointestinal Hemorrhage/complications , Gastrointestinal Hemorrhage/pathology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Mortality , Predictive Value of Tests , Prognosis , Prospective Studies , Reproducibility of Results , Risk Assessment , Shock/etiology , Shock/mortality , Shock/pathology , Survival Analysis , Upper Gastrointestinal Tract/pathology , Young Adult
7.
J Med Chem ; 62(4): 1701-1714, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30212196

ABSTRACT

Two decades have passed since the rule of five ushered in the concept of "drug-like" properties. Attempts to quantify, correlate, and categorize molecules based on Ro5 parameters evolved into the introduction of efficiency metrics with far reaching consequences in decision making by industry leaders and scientists seeking to discover new medicines. Examination of oral drug parameters approved before and after the original Ro5 analysis demonstrates that some parameters such as clogP and HBD remained constant while the cutoffs for parameters such as molecular weight and HBA have increased substantially over the past 20 years. The time dependent increase in the molecular weight of oral drugs during the past 20 years provides compelling evidence to disprove the hypothesis that molecular weight is a "drug-like" property. This analysis does not validate parameters that have not changed as being "drug-like" but instead calls into question the entire hypothesis that "drug-like" properties exist.


Subject(s)
Drug Discovery , Pharmaceutical Preparations/chemistry , Drug Approval , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Pharmacology/methods
8.
ACS Chem Biol ; 13(3): 647-656, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29304282

ABSTRACT

SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (1) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (2) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that 2 binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding site-a cleft formed at the interface of the N-terminal SH2 and PTP domains. Derivatization of 2 using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by 1 and 2 was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies.


Subject(s)
Allosteric Regulation , Allosteric Site , Piperidines/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidines/pharmacology , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Neoplasms/drug therapy , Protein Conformation , Protein Stability
9.
ACS Med Chem Lett ; 8(10): 1116-1121, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-29057061

ABSTRACT

Inhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg132. Having identified an allosteric, induced pocket of IDH1R132H, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for in vivo modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate IDH305 (13), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents. Preclinical characterization of this compound exhibited in vivo correlation of 2-HG reduction and efficacy in a patient-derived IDH1 mutant xenograft tumor model. IDH305 (13) has progressed into human clinical trials for the treatment of cancers with IDH1 mutation.

10.
Methods Mol Biol ; 1550: 149-170, 2017.
Article in English | MEDLINE | ID: mdl-28188529

ABSTRACT

Generating molecular information in a clinically relevant time frame is the first hurdle to truly integrating precision medicine in health care. Reverse phase protein microarrays are being utilized in clinical trials for quantifying posttranslationally modified signal transduction proteins and cellular signaling pathways, allowing direct comparison of the activation state of proteins from multiple specimens, or individual patient specimens, within the same array. This technology provides diagnostic and therapeutic information critical to precision medicine. To enhance accessibility of this technology, two hurdles must be overcome: data normalization and data acquisition. Herein we describe an unamplified, dual-color signal detection methodology for reverse phase protein microarrays that allows multiplex, within spot data normalization, reduces data acquisition time, simplifies automated spot detection, and provides a stable signal output. This method utilizes Quantum Nanocrystal fluorophore labels (Qdot) substituted for organic fluorophores coupled with an imager (ArrayCAM) that captures images of the microarray rather than sequentially scanning the array. Streamlining and standardizing the data analysis steps with ArrayCAM high-resolution, dual mode chromogenic/fluorescent array imaging overcomes the data acquisition hurdle. The spot location and analysis algorithm provides certain parameter settings that can be tailored to the particular microarray type (fluorescent vs. colorimetric), resulting in greater than 99 % spot location sensitivity. The described method demonstrates equivalent sensitivity for a non-amplified Qdot immunoassay when using automated vs. manual immunostaining procedures.


Subject(s)
Colorimetry/methods , Precision Medicine/methods , Protein Array Analysis/methods , Protein Processing, Post-Translational , Proteins/metabolism , Humans , Image Processing, Computer-Assisted , Phosphorylation , Sensitivity and Specificity , Signal Transduction , Statistics as Topic
11.
J Med Chem ; 60(6): 2215-2226, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28092155

ABSTRACT

Overexpression and somatic heterozygous mutations of EZH2, the catalytic subunit of polycomb repressive complex 2 (PRC2), are associated with several tumor types. EZH2 inhibitor, EPZ-6438 (tazemetostat), demonstrated clinical efficacy in patients with acceptable safety profile as monotherapy. EED, another subunit of PRC2 complex, is essential for its histone methyltransferase activity through direct binding to trimethylated lysine 27 on histone 3 (H3K27Me3). Herein we disclose the discovery of a first-in-class potent, selective, and orally bioavailable EED inhibitor compound 43 (EED226). Guided by X-ray crystallography, compound 43 was discovered by fragmentation and regrowth of compound 7, a PRC2 HTS hit that directly binds EED. The ensuing scaffold hopping followed by multiparameter optimization led to the discovery of 43. Compound 43 induces robust and sustained tumor regression in EZH2MUT preclinical DLBCL model. For the first time we demonstrate that specific and direct inhibition of EED can be effective as an anticancer strategy.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Sulfones/chemistry , Sulfones/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Crystallography, X-Ray , Dogs , Female , Haplorhini , Histones/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Lysine/metabolism , Male , Methylation/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , Rats , Sulfones/pharmacokinetics , Sulfones/therapeutic use , Triazoles/pharmacokinetics , Triazoles/therapeutic use
12.
J Med Chem ; 60(1): 415-427, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27992714

ABSTRACT

PRC2 is a multisubunit methyltransferase involved in epigenetic regulation of early embryonic development and cell growth. The catalytic subunit EZH2 methylates primarily lysine 27 of histone H3, leading to chromatin compaction and repression of tumor suppressor genes. Inhibiting this activity by small molecules targeting EZH2 was shown to result in antitumor efficacy. Here, we describe the optimization of a chemical series representing a new class of PRC2 inhibitors which acts allosterically via the trimethyllysine pocket of the noncatalytic EED subunit. Deconstruction of a larger and complex screening hit to a simple fragment-sized molecule followed by structure-guided regrowth and careful property modulation were employed to yield compounds which achieve submicromolar inhibition in functional assays and cellular activity. The resulting molecules can serve as a simplified entry point for lead optimization and can be utilized to study this new mechanism of PRC2 inhibition and the associated biology in detail.


Subject(s)
Enzyme Inhibitors/chemistry , Epigenesis, Genetic , Methyltransferases/antagonists & inhibitors , Polycomb Repressive Complex 2/chemistry , Allosteric Regulation , Caco-2 Cells , Chromatography, Liquid , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Mass Spectrometry , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Structure-Activity Relationship
13.
J Biol Chem ; 291(41): 21669-21681, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27519412

ABSTRACT

Melanoma differentiation-associated gene 7 (MDA-7/IL-24) exhibits cytotoxic effects on tumor cells while sparing untransformed cells, and Bcl-x(L) is reported to efficiently block the induction of cell death by MDA-7/IL-24. The expression of Bcl-x(L) is regulated at the level of RNA splicing via alternative 5' splice site selection within exon 2 to produce either the pro-apoptotic Bcl-x(s) or the anti-apoptotic Bcl-x(L). Our laboratory previously reported that Bcl-x RNA splicing is dysregulated in a large percentage of human non-small cell lung cancer (NSCLC) tumors. Therefore, we investigated whether the alternative RNA splicing of Bcl-x pre-mRNA was modulated by MDA-7/IL-24, which would suggest that specific NSCLC tumors are valid targets for this cytokine therapy. Adenovirus-delivered MDA-7/IL-24 (Ad.mda-7) reduced the viability of NSCLC cells of varying oncogenotypes, which was preceded by a decrease in the ratio of Bcl-x(L)/Bcl-x(s) mRNA and Bcl-x(L) protein expression. Importantly, both the expression of Bcl-x(L) and the loss of cell viability were "rescued" in Ad.mda-7-treated cells incubated with Bcl-x(s) siRNA. In addition, NSCLC cells ectopically expressing Bcl-x(s) exhibited significantly reduced Bcl-x(L) expression, which was again restored by Bcl-x(s) siRNA, suggesting the existence of a novel mechanism by which Bcl-x(s) mRNA restrains the expression of Bcl-x(L). In additional mechanistic studies, inhibition of SRC and PKCδ completely ablated the ability of MDA-7/IL-24 to reduce the Bcl-x(L)/(s) mRNA ratio and cell viability. These findings show that Bcl-x(s) expression is an important mediator of MDA-7/IL-24-induced cytotoxicity requiring the SRC/PKCδ signaling axis in NSCLC cells.


Subject(s)
Alternative Splicing , Carcinoma, Non-Small-Cell Lung/metabolism , Interleukins/metabolism , Lung Neoplasms/metabolism , Protein Kinase C-delta/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , RNA Stability , RNA, Messenger/metabolism , RNA, Neoplasm/metabolism , Signal Transduction , bcl-X Protein/metabolism , A549 Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Interleukins/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Kinase C-delta/genetics , Proto-Oncogene Proteins pp60(c-src)/genetics , RNA, Messenger/genetics , RNA, Neoplasm/genetics , bcl-X Protein/genetics
14.
Nature ; 535(7610): 148-52, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27362227

ABSTRACT

The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS­ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 µM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS­ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.


Subject(s)
Neoplasms/drug therapy , Neoplasms/enzymology , Piperidines/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrimidines/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Inhibitory Concentration 50 , MAP Kinase Signaling System/drug effects , Mice , Mice, Nude , Models, Molecular , Neoplasms/pathology , Oncogene Protein p21(ras)/metabolism , Piperidines/chemistry , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Stability/drug effects , Protein Structure, Tertiary/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Reproducibility of Results , Xenograft Model Antitumor Assays
15.
Toxicol Sci ; 153(1): 39-54, 2016 09.
Article in English | MEDLINE | ID: mdl-27255383

ABSTRACT

Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and suggest that the optimal time to assess potentially transcriptionally mediated physiologic effects will be delayed relative to an epigenetic drug's Tmax/Cmax.


Subject(s)
Heart/drug effects , Histone Deacetylase Inhibitors/pharmacology , Transcription, Genetic , Animals , Biological Transport , Dogs , Heart/physiology , Histone Deacetylase Inhibitors/pharmacokinetics , Male
16.
J Med Chem ; 59(17): 7773-82, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27347692

ABSTRACT

SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.


Subject(s)
Antineoplastic Agents/chemistry , Piperidines/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pyrazines/chemistry , Pyrimidines/chemistry , Administration, Oral , Allosteric Regulation , Allosteric Site , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Female , Heterografts , High-Throughput Screening Assays , Humans , Male , Mice, Inbred C57BL , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Piperidines/chemical synthesis , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Conformation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship
17.
Cancer Res ; 76(10): 2977-89, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27197231

ABSTRACT

Alternate RNA processing of caspase-9 generates the splice variants caspase 9a (C9a) and caspase 9b (C9b). C9b lacks a domain present in C9a, revealing a tumorigenic function that drives the phenotype of non-small cell lung cancer (NSCLC) cells. In this study, we elucidated the mechanistic underpinnings of the malignant character of this splice isoform. In NSCLC cells, C9b expression correlated with activation of the canonical arm of the NF-κB pathway, a major pathway linked to the NSCLC tumorigenesis. Mechanistic investigations revealed that C9b activates this pathway via direct interaction with cellular inhibitor of apoptosis 1 (cIAP1) and subsequent induction of the E3 ligase activity of this IAP family member. The C9b:cIAP1 interaction occurred via the BIR3 domain of cIAP1 and the IAP-binding motif of C9b, but did not require proteolytic cleavage of C9b. This protein:protein interaction was essential for C9b to promote viability and malignant growth of NSCLC cells in vitro and in vivo, broadly translating to diverse NSCLC oncogenotypes. Overall, our findings identified a novel point for therapeutic invention in NSCLC that may be tractable to small-molecule inhibitors, as a new point to broadly address this widespread deadly disease. Cancer Res; 76(10); 2977-89. ©2016 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Caspase 9/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Lung Neoplasms/pathology , NF-kappa B/metabolism , Animals , Apoptosis , Blotting, Western , Carcinogenesis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Caspase 9/genetics , Cell Proliferation , High-Throughput Nucleotide Sequencing , Humans , Immunoenzyme Techniques , Immunoprecipitation , Inhibitor of Apoptosis Proteins/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Mice, SCID , NF-kappa B/genetics , Protein Binding , Proteolysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Ubiquitination , Xenograft Model Antitumor Assays
18.
Heart Rhythm ; 13(3): 755-61, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26586453

ABSTRACT

BACKGROUND: Frequent premature ventricular contractions (PVCs) have been associated with PVC-induced cardiomyopathy (CM) in some patients. OBJECTIVE: The purpose of this study was to understand the cardiac consequences of different PVC burdens and the minimum burden required to induce left ventricular (LV) dysfunction. METHODS: Right ventricular apical PVCs at a coupling interval of 240 ms were introduced at different PVC burdens in 9 mongrel canines. A stepwise increase in PVC burden was implemented every 8 weeks from 0% (baseline), 7%, 14%, 25%, 33% to 50% using our premature pacing algorithm. Echocardiogram and 24-hour Holter were obtained at 4- and 8-week period for each PVC burden with a single blinded reader assessing all echocardiographic parameters including those assessed by speckle tracking imaging (EchoPAC workstation, General Electric). CM was defined as left ventricular ejection fraction (LVEF) <50% or LVEF drop >10% points. Interleukin-6 and pro-brain natriuretic peptide levels were obtained at the end of each PVC burden. RESULTS: The mean LVEF (mean heart rate) at 8 weeks for each PVC burden (0%, 7%, 14%, 33%, and 50%) were 57% ± 2.9% (85 ± 13 beats/min), 54.4% ± 3% (81 ± 10 beats/min), 53.3% ± 5% (77 ± 12 beats/min), 51.1% ± 4.2% (79 ± 14 beats/min), 47.7% ± 3.8% (80 ± 14 beats/min), and 44.7% ± 1.9% (157 ± 43 beats/min). PVC-induced CM was present in 11.1%, 44.4%, and 100% of animals with 25%, 33%, and 50% PVC burden, respectively. E/A ratio and radial strain decreased while left atrial size increased beyond 33% PVC burden. No changes in pro-brain natriuretic peptide and interleukin-6 levels were noted at any PVC burden. CONCLUSION: LV systolic function (LVEF and radial strain) declined linearly as PVC burden increased. PVC-induced CM developed in some canines with 25% and 33% PVC burden, but developed in all animals with 50% PVC burden.


Subject(s)
Cardiomyopathies/etiology , Electrocardiography , Ventricular Function, Left/physiology , Ventricular Premature Complexes/complications , Animals , Cardiomyopathies/diagnosis , Cardiomyopathies/physiopathology , Disease Models, Animal , Dogs , Echocardiography , Stroke Volume/physiology , Ventricular Premature Complexes/diagnosis , Ventricular Premature Complexes/physiopathology
19.
ACS Med Chem Lett ; 5(1): 2-5, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24900765

ABSTRACT

To increase the probability of success in drug discovery, the concept of drug-like properties was introduced. Efficiency metrics that normalize potency against these properties could help reach drug-like space more efficiently. Potential reasons for the inefficient use of metrics and suboptimal decision making are discussed.

20.
Article in English | MEDLINE | ID: mdl-30023020

ABSTRACT

Iron oxide nanoparticles have received sustained interest for biomedical applications as synthetic approaches are continually developed for control of nanoparticle properties. However, many approaches focus solely on the material, rather than the complete optimization of synthesis and functionalization together to enhance translation into biological systems. Presented herein is a modified seed growth method designed for obtaining optimal nanoparticle properties and ease of surface functionalization for long term stability. With a one or two addition process, iron oxide nanoparticles were produced in crystallite sizes ranging from 5-15 nm using only benzyl alcohol and an iron precursor. In the functionalization process, concentration variations were required for stabilizing different nanoparticle sizes. Radio frequency induction heating experiments of various crystallite and hydrodynamic sizes verified that the heating efficiency greatly increased while approaching the 15 nm crystallite, and suggested an important role of the overall particle size on heating efficiency. Initial in vitro experiments with the functionalized nanoparticles showed success in providing hyperthermia-induced tumour cell killing without an increase in the temperature of the cell suspension medium. This demonstrates the potential for nanoparticle-based hyperthermia to provide a therapeutic effect while limiting normal tissue damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...