Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(11): e0289221, 2023.
Article in English | MEDLINE | ID: mdl-37910458

ABSTRACT

Norwegian lobster, Nephrops norvegicus, are a generalist scavenger and predator capable of short foraging excursions but can also suspension feed. Existing knowledge about their diet relies on a combination of methods including morphology-based stomach content analysis and stable isotopes, which often lack the resolution to distinguish prey items to species level particularly in species that thoroughly masticate their prey. DNA metabarcoding overcomes many of the challenges associated with traditional methods and it is an attractive approach to study the dietary profiles of animals. Here, we present the diet of the commercially valuable Nephrops norvegicus using DNA metabarcoding of gut contents. Despite difficulties associated with host amplification, our cytochrome oxidase I (COI) molecular assay successfully achieves higher resolution information than traditional approaches. We detected taxa that were likely consumed during different feeding strategies. Dinoflagellata, Chlorophyta and Bacillariophyta accounted for almost 50% of the prey items consumed, and are associated with suspension feeding, while fish with high fisheries discard rates were detected which are linked to active foraging. In addition, we were able to characterise biodiversity patterns by considering Nephrops as natural samplers, as well as detecting parasitic dinoflagellates (e.g., Hematodinium sp.), which are known to influence burrow related behaviour in infected individuals in over 50% of the samples. The metabarcoding data presented here greatly enhances a better understanding of a species' ecological role and could be applied as a routine procedure in future studies for proper consideration in the management and decision-making of fisheries.


Subject(s)
Decapoda , Nephropidae , Animals , DNA Barcoding, Taxonomic , Seafood , Fishes , Diet
2.
Mol Ecol Resour ; 23(7): 1689-1705, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37452608

ABSTRACT

The ability to gather genetic information using DNA metabarcoding of bulk samples obtained directly from the environment is crucial to determine biodiversity baselines and understand population dynamics in the marine realm. While DNA metabarcoding is effective in evaluating biodiversity at community level, genetic patterns within species are often concealed in metabarcoding studies and overlooked for marine invertebrates. In the present study, we implement recently developed bioinformatics tools to investigate intraspecific genetic variability for invertebrate taxa in the Mediterranean Sea. Using metabarcoding samples from Autonomous Reef Monitoring Structures (ARMS) deployed in three locations, we present haplotypes and diversity estimates for 145 unique species. While overall genetic diversity was low, we identified several species with high diversity records and potential cryptic lineages. Further, we emphasize the spatial scale of genetic variability, which was observed from locations to individual sampling units (ARMS). We carried out a population genetic analysis of several important yet understudied species, which highlights the current knowledge gap concerning intraspecific genetic patterns for the target taxa in the Mediterranean basin. Our approach considerably enhances biodiversity monitoring of charismatic and understudied Mediterranean species, which can be incorporated into ARMS surveys.


Subject(s)
DNA Barcoding, Taxonomic , Invertebrates , Animals , Biodiversity , Aquatic Organisms , DNA/genetics , Genetic Variation , Ecosystem
3.
Mol Ecol Resour ; 22(8): 2956-2966, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35751617

ABSTRACT

Large and hyperdiverse marine ecosystems pose significant challenges to biodiversity monitoring. While environmental DNA (eDNA) promises to meet many of these challenges, recent studies suggested that sponges, as "natural samplers" of eDNA, could further streamline the workflow for detecting marine vertebrates. However, beyond pilot studies demonstrating the ability of sponges to capture eDNA, little is known about the dynamics of eDNA particles in sponge tissue, and the effectiveness of the latter compared to water samples. Here, we present the results of a controlled aquarium experiment to examine the persistence and detectability of eDNA captured by three encrusting sponge species and compare the sponge's eDNA capturing ability with established water filtration techniques. Our results indicate that sponges and water samples have highly similar detectability for fish of different sizes and abundances, but different sponge species exhibit considerable variance in performance. Interestingly, one sponge appeared to mirror the eDNA degradation profile of water samples, while another sponge retained eDNA throughout the experiment. A third sponge yielded virtually no DNA sequences at all. Overall, our study suggests that some sponges will be suitable as natural samplers, while others will introduce significant problems for laboratory processing. We suggest that an initial optimization phase will be required in any future studies aiming to employ sponges for biodiversity assessment. With time, factoring in technical and natural accessibility, it is expected that specific sponge taxa may become the "chosen" natural samplers in certain habitats and regions.


Subject(s)
DNA, Environmental , Animals , Biodiversity , DNA Barcoding, Taxonomic/methods , DNA, Environmental/genetics , Ecosystem , Environmental Monitoring/methods , Fishes/genetics , Water
4.
Foods ; 10(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34441601

ABSTRACT

The common octopus (Octopus vulgaris) is a highly valued cephalopod species which is marketed with different grades of processing, such as frozen, cooked or even canned, and is likely to be mislabeled. Some molecular methods have been developed for the authentication of these products, but they are either labor-intensive and/or require specialized equipment and personnel. This work describes a newly designed rapid, sensitive and easy-to-use method for the detection of Octopus vulgaris in food products, based on Recombinase Polymerase Amplification (RPA) and a detection using a Lateral Flow assay (LFA). After studying several gene markers, a system of primers and nfo-probe was designed in the COI (Cytochrome Oxidase I) region and was successfully tested in 32 reference samples (covering 14 species) and 32 commercial products, after optimization. The method was also validated in a ring trial with eight European laboratories and represents a useful tool for food authenticity control at all levels of the value chain.

5.
Mol Ecol ; 30(13): 3355-3373, 2021 07.
Article in English | MEDLINE | ID: mdl-33682164

ABSTRACT

DNA metabarcoding has been increasingly used to detail distributions of hundreds of species. Most analyses focus on creating molecular operational taxonomic units (MOTUs) from complex mixtures of DNA sequences, but much less common is use of the sequence diversity within these MOTUs. Here we use the diversity of COI haplotypes within MOTUs from a California kelp forest to infer patterns of population abundance, dispersal and population history from 527 species of animals and algae from 106 samples of benthic habitats in Monterey Bay. Using haplotypes as a unit we show fine-grained differences of abundance across locations for 15 species, and marked aggregation from sample to sample for most of the common species of plants and animals. Previous analyses could not distinguish these patterns from artefacts of amplification or sequence bias. Our haplotype data also reveal strong population genetic differentiation over small spatial scales for 48 species of red algae, sponges and Bryozoa. Last, phylogenetic analysis of mismatch frequencies among haplotypes show a wide variety of demographic histories from recent expansions to long, stable population sizes. These analyses show that abundant, small-bodied marine species that are often overlooked in ecological surveys can have strikingly different patterns of ecological and genetic structure leading to population, ecological and perhaps adaptive differences between habitats. MOTU diversity data from the same sequencing efforts that generate species-level analyses can greatly increase the scope and value of metabarcoding studies.


Subject(s)
Kelp , Animals , Biodiversity , Forests , Haplotypes/genetics , Kelp/genetics , Phylogeny
6.
Ecol Evol ; 10(23): 13248-13259, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304534

ABSTRACT

The early detection of invasive non-native species (INNS) is important for informing management actions. Established monitoring methods require the collection or observation of specimens, which is unlikely at the beginning of an invasion when densities are likely to be low. Environmental DNA (eDNA) analysis is a highly promising technique for the detection of INNS-particularly during the early stages of an invasion.Here, we compared the use of traditional kick-net sampling with two eDNA approaches (targeted detection using both conventional and quantitative PCR and passive detection via metabarcoding with conserved primers) for detection of quagga mussel, Dreissena rostriformis bugensis, a high priority INNS, along a density gradient on the River Wraysbury, UK.All three molecular tools outperformed traditional sampling in terms of detection. Conventional PCR and qPCR both had 100% detection rate in all samples and outperformed metabarcoding when the target species was at low densities. Additionally, quagga mussel DNA copy number (qPCR) and relative read count (metabarcoding) were significantly influenced by both mussel density and distance from source population, with distance being the most significant predictor. Synthesis and application. All three molecular approaches were more sensitive than traditional kick-net sampling for the detection of the quagga mussel in flowing water, and both qPCR and metabarcoding enabled estimates of relative abundance. Targeted approaches were more sensitive than metabarcoding, but metabarcoding has the advantage of providing information on the wider community and consequently the impacts of INNS.

7.
Mol Ecol Resour ; 19(6): 1470-1485, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31436907

ABSTRACT

Kelp forest ecosystems dominate 150,000 km of global temperate coastline, rivalling the coastal occurrence of coral reefs. Despite the astounding biological diversity and productive ecological communities associated with kelp forests, patterns of species richness and composition are difficult to monitor and compare. Crustose coralline algae are a critically important substrate for propagule settlement for a range of kelp forest species. Coralline-covered cobbles are home to hundreds of species of benthic animals and algae and form a replicable unit for ecological assays. Here, we use DNA metabarcoding of bulk DNA extracts sampled from cobbles to explore patterns of species diversity in kelp forests of the central California coast. The data from 97 cobbles within kelp forest ecosystems at three sites in Central California show the presence of 752 molecular operational taxonomic units (MOTUs) and 53 MOTUs assigned up to the species level with >95% similarity to current databases. We are able to detect spatial patterns of important management targets such as abalone recruits, and localized abundance of sea stars in 2012. Comparison of classic ecological surveys of these sites reveals large differences in species targets for these two approaches. In order to make such comparisons more quantitative, we use Presence/Absence Metabarcoding, using the fraction of replicate cobbles showing a species as a measure of its local abundance. This approach provides a fast and repeatable survey method that can be applied for biodiversity assessments across systems to shed light on the impact of different ecological disturbances and the role played by marine protected areas.


Subject(s)
Biota/genetics , DNA/genetics , Kelp/genetics , Animals , Biodiversity , California , Coral Reefs , Ecology/methods , Ecosystem , Food Chain , Forests
8.
PeerJ ; 5: e3746, 2017.
Article in English | MEDLINE | ID: mdl-29018597

ABSTRACT

Morphology-based identification of North Atlantic Sebastes has long been controversial and misidentification may produce misleading data, with cascading consequences that negatively affect fisheries management and seafood labelling. North Atlantic Sebastes comprises of four species, commonly known as 'redfish', but little is known about the number, identity and labelling accuracy of redfish species sold across Europe. We used a molecular approach to identify redfish species from 'blind' specimens to evaluate the performance of the Barcode of Life (BOLD) and Genbank databases, as well as carrying out a market product accuracy survey from retailers across Europe. The conventional BOLD approach proved ambiguous, and phylogenetic analysis based on mtDNA control region sequences provided a higher resolution for species identification. By sampling market products from four countries, we found the presence of two species of redfish (S. norvegicus and S. mentella) and one unidentified Pacific rockfish marketed in Europe. Furthermore, public databases revealed the existence of inaccurate reference sequences, likely stemming from species misidentification from previous studies, which currently hinders the efficacy of DNA methods for the identification of Sebastes market samples.

9.
Mol Ecol ; 24(14): 3652-67, 2015 07.
Article in English | MEDLINE | ID: mdl-26073046

ABSTRACT

Vertical divergence in marine organisms is being increasingly documented, yet much remains to be carried out to understand the role of depth in the context of phylogeographic reconstruction and the identification of management units. An ideal study system to address this issue is the beaked redfish, Sebastes mentella - one of four species of 'redfish' occurring in the North Atlantic - which is known for a widely distributed 'shallow-pelagic' oceanic type inhabiting waters between 250 and 550 m, and a more localized 'deep-pelagic' population dwelling between 550 and 800 m, in the oceanic habitat of the Irminger Sea. Here, we investigate the extent of population structure in relation to both depth and geographic spread of oceanic beaked redfish throughout most of its distribution range. By sequencing the mitochondrial control region of 261 redfish collected over a decadal interval, and combining 160 rhodopsin coding nuclear sequences and previously genotyped microsatellite data, we map the existence of two strongly divergent evolutionary lineages with significantly different distribution patterns and historical demography, and whose genetic variance is mostly explained by depth. Combined genetic data, analysed via independent approaches, are consistent with a Late Pleistocene lineage split, where segregation by depth probably resulted from the interplay of climatic and oceanographic processes with life history and behavioural traits. The ongoing process of diversification in North Atlantic S. mentella may serve as an 'hourglass' to understand speciation and adaptive radiation in Sebastes and in other marine taxa distributed across a depth gradient.


Subject(s)
Genetic Speciation , Genetics, Population , Perciformes/genetics , Animals , Atlantic Ocean , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Markers , Genetic Variation , Genotype , Haplotypes , Microsatellite Repeats , Models, Genetic , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA
10.
PeerJ ; 2: e525, 2014.
Article in English | MEDLINE | ID: mdl-25165634

ABSTRACT

Despite the striking physical and environmental gradients associated with depth variation in the oceans, relatively little is known about their impact on population diversification, adaptation and speciation. Changes in light associated with increasing depth are likely to alter the visual environment of organisms, and adaptive changes in visual systems may be expected. The pelagic beaked redfish, Sebastes mentella, exhibits depth-associated patterns of substructure in the central North Atlantic, with a widely distributed shallow-pelagic population inhabiting waters between 250 and 550 m depth and a deep-pelagic population dwelling between 550 and 800 m. Here we performed a molecular genetic investigation of samples from fish collected from 'shallow' and 'deep' populations, using the mitochondrial control region and the gene coding for the visual-pigment rhodopsin. We identify patterns suggestive of potential adaptation to different depths, by detecting a specific amino acid replacement at the rhodopsin gene. Mitochondrial DNA results reflect a scenario of long-term demographic independence between the two S. mentella groups, and raise the possibility that these 'stocks' may in fact be two incipient species.

SELECTION OF CITATIONS
SEARCH DETAIL
...