Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Pharmacol Pharm Sci ; 2024: 2303942, 2024.
Article in English | MEDLINE | ID: mdl-38835733

ABSTRACT

This study aims to improve the biopharmaceutical, mechanical, and tableting properties of a poorly soluble drug, ibuprofen (IBP), by preparing amorphous solid dispersion (ASD) followed by a sustained-release tablet formulation. A suitable polymer to develop an ASD system was chosen by utilizing the apparent solubility of IBP in various polymer solutions. ASDs containing various ratios of IBP and selected polymer were prepared by the melt fusion (MF) method. ASD containing optimized drug-polymer ratio prepared by freeze-drying (FD) method was characterized and compared physicochemically. The solubility of IBP in water increased 28-fold and 35-fold when formulated as ASD by MF and FD, respectively. Precise formulations showed amorphization of IBP and increased surface area, improving solubility. The dissolution pattern of optimized ASD-IBP in pH 6.8 phosphate buffer after 60 min in MF and FD was enhanced 3-fold. In addition, direct compression tablets comprising optimized ASD granules from MF and FD were made and assessed using compendial and noncompendial methods. ASD-IBP/MF and ASD-IBP/FD formulations showed a similar drug release profile. In addition, 12 h of sustained IBP release from the ASD-IBP-containing tablets was obtained in a phosphate buffer with a pH of 6.8. From the dissolution kinetics analysis, the Weibull model fitted well. The drug release pattern indicated minimal variations between tablets formed using ASD-IBP prepared by both procedures; however, pre- and postcompression assessment parameters differed. From these findings, the application of ASD and sustained-release polymers in matrix formation might be beneficial in improving the solubility and absorption of poorly soluble drugs such as IBP.

2.
Drug Deliv ; 31(1): 2337423, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38590120

ABSTRACT

The present study was designed to develop a self-micellizing solid dispersion (SMSD) containing Thymoquinone (TQM), a phytonutrient obtained from Nigella sativa seeds, aiming to improve its biopharmaceutical and nephroprotective functions. The apparent solubility of TQM in polymer solutions was used to choose an appropriate amphiphilic polymer that could be used to make an SMSD system. Based on the apparent solubility, Soluplus® was selected as an appropriate carrier, and mixing with TQM, SMSD-TQM with different loadings of TQM (5-15%) was made by solvent evaporation and freeze-drying techniques, respectively, and the formulations were optimized. The optimized SMSD-TQM was evaluated in terms of particle size distribution, morphology, release characteristics, pharmacokinetic behavior, and nephroprotective effects in a rat model of acute kidney injury. SMSD-TQM significantly improved the dissolution characteristics (97.8%) of TQM in water within 60 min. Oral administration of SMSD-TQM in rats exhibited a 4.9-fold higher systemic exposure than crystalline TQM. In a cisplatin-induced (6 mg/kg, i.p.) acute kidney-damaged rat model, oral SMSD-TQM (10 mg/kg) improved the nephroprotective effects of TQM based on the results of kidney biomarkers and histological abnormalities. These findings suggest that SMSD-TQM might be efficacious in enhancing the nephroprotective effect of TQM by overcoming biopharmaceutical limitations.


Subject(s)
Biological Products , Micelles , Rats , Animals , Rats, Sprague-Dawley , Benzoquinones , Solubility , Administration, Oral , Biological Availability
3.
Methods Mol Biol ; 2383: 167-179, 2022.
Article in English | MEDLINE | ID: mdl-34766289

ABSTRACT

The mechanism of entry of cell-penetrating peptides (CPPs) into the cytosol of various cells has been studied by examining the interaction of CPPs with lipid bilayers and their entry into lipid vesicle lumens using various methods. Here we describe a single giant unilamellar vesicle (GUV) method to study CPPs. In this new method, we use GUVs containing small GUVs in the mother GUV lumen or GUVs containing large unilamellar vesicles (LUVs) in the GUV lumen and investigate the interaction of fluorescent probe-labeled CPPs with single GUVs in real time using confocal laser scanning microscopy. This method can detect CPPs in the GUV lumen with high sensitivity, allowing immediate measurement of the time course of entry of CPPs into the vesicle lumen. This method allows simultaneous measurement of the entry of CPPs and of CPP-induced pore formation, allowing the relationship between the two events to be determined. One can also simultaneously measure the entry of CPPs and the CPP concentration in the GUV membrane. The rate of entry of CPPs into a single GUV lumen can be estimated by obtaining the fraction of GUVs into which CPPs entered before a specific time t without pore formation among all examined GUVs (i.e., the fraction of entry) and the lumen intensity due to LUVs with bound CPPs. This method is therefore useful for elucidating the mechanism of entry of CPPs into lipid vesicles.


Subject(s)
Cell-Penetrating Peptides/analysis , Fluorescent Dyes , Lipid Bilayers , Microscopy, Confocal , Unilamellar Liposomes
4.
Biochim Biophys Acta Biomembr ; 1863(10): 183680, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34153295

ABSTRACT

Fluorescent-probe-labeled peptides are used to study the interactions of peptides with cells and lipid vesicles but labeling peptides with fluorescent probes can significantly change these interactions. We recently developed a new method to detect the entry of nonlabeled peptides into the lumen of single giant unilamellar vesicles (GUVs). Here we applied this method to examine the interaction of the antimicrobial peptide PGLa with single GUVs to elucidate whether PGLa can enter the GUV lumen without pore formation. First, we examined the interaction of nonlabeled PGLa with single GUVs comprising dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) (4/6) whose lumens contain the fluorescent probe AF647 and DOPG/DOPC (8/2)-large unilamellar vesicles encapsulating a high concentration of calcein. After a large lag period from starting the interaction with PGLa, the fluorescence intensity of the GUV lumen due to calcein (Icalcein) increased gradually without leakage of AF647, indicating that PGLa enters the GUV lumen without pore formation in the GUV membrane. The fraction of entry of PGLa increased with increasing PGLa concentration. Simultaneous measurement of the fractional area change of the GUV membrane (δ) and PGLa-induced increase in Icalcein showed that the entry of PGLa occurs only during the second increase in δ, indicating that PGLa enters the lumen during its translocation from the outer leaflet to the inner leaflet. The fraction of entry of PGLa without pore formation increased with increasing membrane tension. Based on these results, we discuss the elementary processes and the mechanism of the entry of PGLa into the GUV lumen.


Subject(s)
Lipid Bilayers , Pore Forming Cytotoxic Proteins/metabolism , Protein Precursors/metabolism , Fluorescent Dyes , Protein Transport , Unilamellar Liposomes
5.
Heliyon ; 6(9): e05026, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005811

ABSTRACT

PURPOSE: The present study aimed to develop carvedilol (CAR)-loaded (25% w/w) sustained release solid dispersion (SRSD), for enhanced dissolution and to explore the applicability of different industrially accessible drying techniques. METHODS: SRSD-CAR containing different ratios of polymers were prepared and physicochemically characterized. Dissolution study was carried out in both sink and supersaturated conditions to identify the possible enhancement in dissolution behavior. RESULTS: Based on the solubility study, Kolliphor® P188 and Eudragit® RSPO (50:25, % w/w) ratio exhibited the highest solubility among the samples and was chosen as the optimal composition of SRSD-CAR for further characterization. The crystallinity assessments of the optimized formulation indicated amorphization of CAR in the formulation, bring about improved solubility of CAR. The infrared spectroscopic study revealed minor transitions; demonstrating the absence of significant interactions between drug and carrier. Furthermore, the SRSD-CAR exhibited immediate formation of nano particles when dispersed in water. Dissolution study revealed significant improvement in dissolution behavior, with a release of CAR in a gradual manner compared to crystalline CAR. From the dissolution kinetics analysis, the Korsmeyer Peppas model fit the best and diffusion was predominant in release of CAR. The drug release pattern showed insignificant differences between the SRSD-CAR formulations prepared by rotary vacuum drying and freeze drying. CONCLUSION: From these experimental findings, SRSD approach might be a favorable dosage option for CAR, offering improved biopharmaceutical properties.

6.
Biochemistry ; 59(18): 1780-1790, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32285663

ABSTRACT

The entry of cell-penetrating peptides (CPPs) into live cells and lipid vesicles has been monitored using probe (e.g., fluorescent dye)-labeled CPPs. However, probe labeling may alter the interaction of CPPs with membranes. We have developed a new method to detect the entry of nonlabeled CPPs into the lumens of single giant unilamellar vesicles (GUVs) without pore formation in the GUV membrane. The GUVs contain large unilamellar vesicles (LUVs) whose lumens contain a high (self-quenching) concentration of the fluorescent dye calcein. If the CPPs enter the GUV lumen and interact with these LUVs to induce calcein leakage, the fluorescence intensity (FI) due to calcein in the GUV lumen increases. The lipid compositions of the LUVs and GUVs allow leakage from LUVs but not from the GUVs. We applied this method to detect the entry of transportan 10 (TP10) into single GUVs comprising dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine and examined the interaction of low concentrations of nonlabeled TP10 with single GUVs whose lumens contain Alexa Fluor 647 hydrazide (AF647) and the LUVs mentioned above. The FI of the GUV lumen due to calcein increased continuously with time without leakage of AF647, indicating that TP10 entered the GUV without pore formation in the GUV membrane. The lumen intensity due to calcein increased with TP10 concentration, indicating that the rate of entry of TP10 into the GUV lumen increased. We estimated the minimum TP10 concentration in a GUV lumen detected by this method. We discuss the entry of nonlabeled TP10 and the characteristics of this method.


Subject(s)
Cell-Penetrating Peptides/analysis , Recombinant Fusion Proteins/analysis , Unilamellar Liposomes/chemistry , Cell-Penetrating Peptides/metabolism , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Humans , Recombinant Fusion Proteins/metabolism , Unilamellar Liposomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...