Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 328: 117005, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36508983

ABSTRACT

Potential new sources of phosphorus (P) fertilizer are the recovered P from livestock wastewater through chemical precipitation and the ash from combusting animal manures. Although most of the research on P losses from conservation tillage include high water-soluble P compounds from commercial fertilizer sources, information on the use of non-conventional, low water-soluble, recycled P sources is scarce. Particularly for sandy soils of the United States (US) Southeastern Coastal Plain region, research driven information on P loss into the environment is needed to determine recommendations for a direct use of new recycled P sources as crop P fertilizers. The objective of this study is to investigate the potential P runoff from sandy soils under conservation tillage, fertilized with recovered P from liquid swine manure and turkey litter ash in comparison with commercial P fertilizer triple superphosphate (TSP). The field study included two typical sandy soils of the US Southeastern Coastal Plain region, the Noboco and Norfolk. Simulated rain corresponding to the annual 30-min rainfall in the study site (Florence County, South Carolina) was applied to plots treated with recovered P from liquid swine manure, turkey litter ash, and TSP, including a control with no P added. The runoff was monitored and sampled every 5 min during the test and composite soil samples were collected from the top (0-15 cm) and subsurface (15-30 cm) soil layers in each plot. Laboratory analyses were conducted to quantify both total P (TP) and soluble reactive P (SRP) in runoff samples, and the soil test P in the soil layers. Two-way analyses of variances show significant treatment effects on both TP and SRP runoff. The quantities of SRP runoff from plots treated with the recovered P from swine manure and turkey litter ash represent respectively 1% and 7-8% of SRP runoff from plots treated with TSP. Hence, the use of the recovered P materials as crop P fertilizers through surface broadcast application present less environmental risks compared to commercial TSP.


Subject(s)
Phosphorus , Soil , Animals , Swine , Phosphorus/analysis , Phosphates , Fertilizers/analysis , Sand , Manure , Water Movements , Rain , Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL
...