Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Adv ; 10(21): eadl3214, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787958

ABSTRACT

The replication accuracy of DNA polymerase gamma (Pol γ) is essential for mitochondrial genome integrity. Mutation of human Pol γ arginine-853 has been linked to neurological diseases. Although not a catalytic residue, Pol γ arginine-853 mutants are void of polymerase activity. To identify the structural basis for the disease, we determined a crystal structure of the Pol γ mutant ternary complex with correct incoming nucleotide 2'-deoxycytidine 5'-triphosphate (dCTP). Opposite to the wild type that undergoes open-to-closed conformational changes when bound to a correct nucleotide that is essential for forming a catalytically competent active site, the mutant complex failed to undergo the conformational change, and the dCTP did not base pair with its Watson-Crick complementary templating residue. Our studies revealed that arginine-853 coordinates an interaction network that aligns the 3'-end of primer and dCTP with the catalytic residues. Disruption of the network precludes the formation of Watson-Crick base pairing and closing of the active site, resulting in an inactive polymerase.


Subject(s)
Base Pairing , Catalytic Domain , DNA Polymerase gamma , Humans , DNA Polymerase gamma/metabolism , DNA Polymerase gamma/genetics , DNA Polymerase gamma/chemistry , Models, Molecular , Mutation , Deoxycytosine Nucleotides/metabolism , Deoxycytosine Nucleotides/chemistry , Crystallography, X-Ray , Protein Binding
2.
Antimicrob Agents Chemother ; 60(9): 5608-11, 2016 09.
Article in English | MEDLINE | ID: mdl-27381400

ABSTRACT

We found a heterozygous C2857T mutation (R953C) in polymerase gamma (Pol-γ) in an HIV-infected patient with mitochondrial toxicity. The R953C Pol-γ mutant binding affinity for dCTP is 8-fold less than that of the wild type. The R953C mutant shows a 4-fold decrease in discrimination of analog nucleotides relative to the wild type. R953 is located on the "O-helix" that forms the substrate deoxynucleoside triphosphate (dNTP) binding site; the interactions of R953 with E1056 and Y986 may stabilize the O-helix and affect polymerase activity.


Subject(s)
Anti-Retroviral Agents/therapeutic use , DNA-Directed DNA Polymerase/genetics , Mitochondria/genetics , Mutation/genetics , Amino Acid Sequence , Binding Sites , DNA Polymerase gamma , Female , HIV Infections/drug therapy , HIV Infections/genetics , Humans , Male , Middle Aged , Protein Conformation
3.
Proc Natl Acad Sci U S A ; 112(28): 8596-601, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124101

ABSTRACT

Nucleoside analog reverse transcriptase inhibitors (NRTIs) are the essential components of highly active antiretroviral (HAART) therapy targeting HIV reverse transcriptase (RT). NRTI triphosphates (NRTI-TP), the biologically active forms, act as chain terminators of viral DNA synthesis. Unfortunately, NRTIs also inhibit human mitochondrial DNA polymerase (Pol γ), causing unwanted mitochondrial toxicity. Understanding the structural and mechanistic differences between Pol γ and RT in response to NRTIs will provide invaluable insight to aid in designing more effective drugs with lower toxicity. The NRTIs emtricitabine [(-)-2,3'-dideoxy-5-fluoro-3'-thiacytidine, (-)-FTC] and lamivudine, [(-)-2,3'-dideoxy-3'-thiacytidine, (-)-3TC] are both potent RT inhibitors, but Pol γ discriminates against (-)-FTC-TP by two orders of magnitude better than (-)-3TC-TP. Furthermore, although (-)-FTC-TP is only slightly more potent against HIV RT than its enantiomer (+)-FTC-TP, it is discriminated by human Pol γ four orders of magnitude more efficiently than (+)-FTC-TP. As a result, (-)-FTC is a much less toxic NRTI. Here, we present the structural and kinetic basis for this striking difference by identifying the discriminator residues of drug selectivity in both viral and human enzymes responsible for substrate selection and inhibitor specificity. For the first time, to our knowledge, this work illuminates the mechanism of (-)-FTC-TP differential selectivity and provides a structural scaffold for development of novel NRTIs with lower toxicity.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Mitochondria/drug effects , Crystallography, X-Ray , DNA Polymerase gamma , DNA-Directed DNA Polymerase/chemistry , Humans , Kinetics , Mitochondria/enzymology , Molecular Probes , Nucleic Acid Synthesis Inhibitors/pharmacology , Protein Conformation , Reverse Transcriptase Inhibitors/pharmacology , Substrate Specificity
4.
Mitochondrion ; 13(6): 592-601, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23993955

ABSTRACT

Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB.


Subject(s)
DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/metabolism , Exonucleases/metabolism , Base Sequence , DNA Polymerase gamma , DNA Repair , DNA, Mitochondrial/chemistry , Electrophoretic Mobility Shift Assay , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...