Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Cell Res ; 431(1): 113740, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37557977

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a type of steatosis not associated with excessive alcohol intake and includes nonalcoholic steatohepatitis (NASH), which can progress to advanced fibrosis and hepatocellular carcinoma. Mitochondrial dysfunction causes oxidative stress, triggering hepatocyte death and inflammation; therefore, the present study aimed to explore relationship between mitochondrial carriers and oxidative stress. Firstly, we established a high fat diet (HFD)-fed ICR mouse NAFLD model characterized by obesity with insulin resistance and found transcriptional upregulation of Slc25a17 and downregulation of Slc25a3 (isoform B) and Slc25a13 in their fatty liver. A mitochondrial phosphate and Cu carrier, SLC25A3, was further studied in wild-type (wt) and SLC25A3-defective HepG2 cells (C1 and C3). SLC25A3 deficiency had insignificant effect on mitochondrial membrane potential (MtMP) and oxygen consumption rate (OCR) in untreated cells but suppressed them when cells were exposed to oleic acid. C1 and C3 cells were prone to produce reactive oxygen species (ROS), and increased ROS was associated with reduced mRNA expression of glutathione peroxidase (GPX) 1 and glutathione disulfide reductase (GSX) in these cell lines. Interestingly, cytoplasmic and mitochondrial Cu accumulation significantly reduced in C1 cells, demonstrating a predominant contribution of SLC25A3 to Cu transport into mitochondrial matrix. Cytotoxicity of free fatty acids was unchanged between wt and SLC25A3-deficient cells. These results indicate that reduced expression of SLC25A3 in fatty liver contributes to electron leak from mitochondria by limiting Cu availability, rendering hepatocytes more susceptible to oxidative stress. This study provides evidence that SLC25A3 is a novel risk factor for developing NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred ICR , Oxidative Stress , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism
2.
Toxicol Appl Pharmacol ; 405: 115201, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32828905

ABSTRACT

We reported that bleomycin (BLM)-induced pulmonary fibrosis was exacerbated in the prostaglandin transporter gene (Slco2a1)-deficient mice (Slco2a1(-/-)). Because cigarette smoke (CS) contributes to creating a profibrotic milieu in the respiratory region, the present study aimed to investigate the impact of CS on SLCO2A1-associated pathogenesis in the lungs of BLM-instilled mice. Bronchoalveolar lavage (BAL) fluid cell analysis indicated more severe inflammation in Slco2a1(-/-) on day 5 after BLM intratracheal instillation, and Slco2a1 deletion increased mRNA expression of pro-inflammatory cytokines (Tnf-α and Il-1ß) and chemokine (Ccl5) in BAL cells. Male Slco2a1(-/-) exhibited significantly higher amounts of released Il-1ß in BAL fluid, compared with female Slco2a1(-/-), male or female Slco2a1(+/+) group. The amount of PGE2 collected in BAL fluid tended to increase in Slco2a1(-/-) compared with Slco2a1(+/+) group, whereas the PGE2 concentrations in lung tissues were comparable between both groups. Besides, PGE2 accumulated more in BAL fluid of male than that of female mice. Therefore, Slco2a1-deficient male mice were found to be more susceptible to BLM-treatment. Moreover, CS extracts (CSE) significantly reduced initial PGE2 uptake by rat type1 alveolar epithelial cell-like (AT1-L) cells and human SLCO2A1-transfected cells. Exposure of AT1-L cells to CSE resulted in decreased mRNA expression of Slco2a1, suggesting that CS modulates SLCO2A1 function. These results indicate that exacerbated lung inflammation is attributed to an increase in Il-1ß peptide and PGE2 accumulation in the alveolar space, which exhibits a male predominance. SLCO2A1 inhibition by CSE is considered to be a new rationale for the lung toxicity of CS.


Subject(s)
Bleomycin/toxicity , Lung/drug effects , Organic Anion Transporters/genetics , Pulmonary Fibrosis/chemically induced , Tobacco Products/toxicity , Tobacco Smoke Pollution/adverse effects , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/genetics , Dinoprostone/metabolism , Disease Models, Animal , Female , Gene Expression/drug effects , HEK293 Cells , Humans , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Knockout , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/metabolism , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...