Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770442

ABSTRACT

Glutathione-capped copper sulfide (CuxSy) nanoparticles with two different average sizes were successfully achieved by using a simple reduction process that involves only changing the reaction temperature. Temperature-induced changes in the size of CuxSy nanoparticles resulted in particles with different optical, morphological, and electrochemical properties. The dependence of electrochemical sensing properties on the sizes of CuxSy nanoparticles was studied by using voltammetric and amperometric techniques. The spherical CuxSy nanoparticles with the average particle size of 25 ± 0.6 nm were found to be highly conductive as compared to CuxSy nanoparticles with the average particle size of 4.5 ± 0.2 nm. The spherical CuxSy nanoparticles exhibited a low bandgap energy (Eg) of 1.87 eV, resulting in superior electrochemical properties and improved electron transfer during glucose detection. The sensor showed a very good electrocatalytic activity toward glucose molecules in the presence of interference species such as uric acid (UA), ascorbic acid (AA), fructose, sodium chloride, and sucrose. These species are often present in low concentrations in the blood. The sensor demonstrated an excellent dynamic linear range between 0.2 to 16 mM, detection limit of 0.2 mM, and sensitivity of 0.013 mA/mM. The applicability of the developed sensor for real field determination of glucose was demonstrated by use of spiked blood samples, which confirmed that the developed sensor had great potential for real analysis of blood glucose levels.

2.
Curr Pharm Des ; 21(37): 5369-88, 2015.
Article in English | MEDLINE | ID: mdl-26377658

ABSTRACT

Magnetic nanoparticles with tailored surface chemistry are widely used for a number of different in vivo applications, ranging from tissue repair and magnetic cell separation through to cancer-hyperthermia, drug delivery and magnetic resonance imaging contrast enhancement. A major requirement for all these biomedical applications is that these nanoparticles must have high magnetization values and sizes smaller than 100 nm with a narrow particle size distribution. Thus nanoparticles must have uniform physical and chemical properties. For these applications, a tailored surface coating/shell needs to be engineered, which has to be non-toxic, biocompatible and make allowance for targetable drug delivery with particle localization in a targeted area. Most work in this field has been done on improving the biocompatibility of the nanoparticles. Only a few scientific investigations have been carried out on improving the quality of magnetic nanoparticles with specific focus on the nanoparticle's surface chemistry, size distribution and shape (which directly influences the magnetic properties). All these particles also need to be properly characterized in order to get a protocol for the quality control of these particles, the nature of the surface coatings and their subsequent geometric arrangement. This will ultimately determine the overall size of the colloids and also plays a significant role in biokinetics and biodistribution of nanoparticles in the body. This review highlights recent advances in the synthetic chemistry, magnetic characterization and biological applications of inorganic/organic - core/shell FexOy based magnetic nanoparticles with specific focus on using the two popular surfactants for producing MNPs namely oleic acid and/or oleylamine as capping agents. Although the main nano-magnets under discussion are magnetite (Fe3O4) nanoparticles, maghemite (γ-Fe2O3) is also briefly mentioned.


Subject(s)
Amines/chemistry , Chemical Engineering/methods , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Oleic Acid/chemistry , Animals , Humans , Magnetite Nanoparticles/chemistry , Particle Size , Surface Properties
3.
Langmuir ; 31(13): 3934-43, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25768034

ABSTRACT

The interface interactions between surfactants oleic acid and oleylamine and magnetic nanoparticles are studied via molecular mechanics and dynamics. Mixtures of these two surfactants are widely advocated in the chemical synthesis of nanoparticles. However, the exact dynamic mechanism remains unclear. Here we report, for the first time, a comprehensive qualitative model showing the importance of acid-base complex formation between oleic acid and oleylamine as well as the presence of free protons in the engineering of nanoparticles of specific shapes and sizes. We show why critical parameters such as surfactant concentration may modify iron oxide nanoparticle shape and size and how this can be understood in the light of acid-base complex pair formation. We report on the influence these parameters have on both the in situ nanoparticle surface charge and zeta potential. Transmission electron microscopy (TEM), FTIR, and pH studies are used to confirm the validity of the calculated binding energies and number of acid-base pairs.


Subject(s)
Amines/chemistry , Ferric Compounds/chemistry , Nanoparticles/chemistry , Oleic Acid/chemistry , Surface-Active Agents/chemistry , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...