Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928091

ABSTRACT

Pain management in neonates continues to be a challenge. Diverse therapies are available that cause loss of pain sensitivity. However, because of side effects, the search for better options remains open. Dexmedetomidine is a promising drug; it has shown high efficacy with a good safety profile in sedation and analgesia in the immature nervous system. Though dexmedetomidine is already in use for pain control in neonates (including premature neonates) and infants as an adjunct to other anesthetics, the question remains whether it affects the neuronal activity patterning that is critical for development of the immature nervous system. In this study, using the neonatal rat as a model, the pharmacodynamic effects of dexmedetomidine on the nervous and cardiorespiratory systems were studied. Our results showed that dexmedetomidine has pronounced analgesic effects in the neonatal rat pups, and also weakly modified both the immature network patterns of cortical and hippocampal activity and the physiology of sleep cycles. Though the respiration and heart rates were slightly reduced after dexmedetomidine administration, it might be considered as the preferential independent short-term therapy for pain management in the immature and developing brain.


Subject(s)
Animals, Newborn , Dexmedetomidine , Dexmedetomidine/pharmacology , Animals , Rats , Analgesics, Non-Narcotic/pharmacology , Analgesia/methods , Pain Management/methods , Male , Rats, Sprague-Dawley , Pain/drug therapy , Heart Rate/drug effects , Female , Nervous System/drug effects , Nervous System/growth & development
2.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36171056

ABSTRACT

In vitro and in vivo experimentation in the central nervous system are effective approaches to study its functioning. Manipulations in vitro are characterized by easy experimental control and stable experimental conditions. However, transferring these advantages to in vivo research remains technically and ethically challenging, preventing many research teams from acquiring critical recordings in their animal models. In order to transfer the benefits of in vitro experimentation to in vivo experimentation, we developed a suite of 3D-printed tools (a superfusion chamber with an independent brain presser and animal stand). Using the immature rat barrel cortex as a model, we show that our set of tools (further "superfusion preparation") provides stable conditions for electrophysiological and neuroimaging recordings in the neonatal rat neocortex in vivo Highly correlated intracellular and extracellular activity was recorded during spontaneous and evoked cortical activity, supporting the possibility of simultaneous long-lasting electrophysiological recordings from a single cortical column in vivo The optical intrinsic signal of evoked cortical responses was also recorded from the skull-free neocortex, suggesting the effective combination of the superfusion preparation with neuroimaging approaches. Modulation of immature activity by epicortical application of pharmacological agents via superfusion equally supports the use of the superfused cortex preparation in pharmacological screening. In addition to high efficiency (in affordability, reliability, and ease of use in vivo), the 3D-printed set of tools developed should reduce animal use, supporting the 3Rs principle (Replacement, Reduction, and Refinement) of ethical use of animals.


Subject(s)
Brain , Electrophysiological Phenomena , Animals , Brain/physiology , Neuroimaging , Printing, Three-Dimensional , Rats , Reproducibility of Results
3.
Sci Rep ; 11(1): 9567, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953244

ABSTRACT

Functional studies in the central nervous system are often conducted using anesthesia. While the dose-dependent effects of anesthesia on neuronal activity have been extensively characterized in adults, little is known about the effects of anesthesia on cortical activity and cerebral blood flow in the immature central nervous system. Substitution of electrophysiological recordings with the less-invasive technique of optical intrinsic signal imaging (OIS) in vivo allowed simultaneous recordings of sensory-evoked functional response and local blood flow changes in the neonatal rat barrel cortex. Using OIS we characterize the effects of two widely used anesthetics-urethane and isoflurane. We found that both anesthetics suppressed the sensory-evoked optical intrinsic signal in a dose-dependent manner. Dependence of the cortical response suppression matched the exponential decay model. At experimental levels of anesthesia, urethane affected the evoked cortical response less than isoflurane, which is in agreement with the results of electrophysiological recordings demonstrated by other authors. Changes in oxygenation and local blood flow also showed negative correlation with both anesthetics. The high similarity in immature patterns of activity recorded in different regions of the developing cortex suggested similar principles of development regardless of the cortical region. Therefore the indicated results should be taken into account during functional explorations in the entire developing cortex. Our results also point to urethane as the anesthetic of choice in non-survival experimental recordings in the developing brain as it produces less prominent impairment of cortical neuronal activity in neonatal animals.


Subject(s)
Anesthetics, Intravenous/pharmacology , Cerebrovascular Circulation/drug effects , Evoked Potentials/drug effects , Isoflurane/pharmacology , Somatosensory Cortex/drug effects , Urethane/pharmacology , Animals , Animals, Newborn , Female , Male , Rats , Rats, Wistar , Somatosensory Cortex/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL
...