Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37623794

ABSTRACT

A promising approach that uses the sol-gel method to manufacture new breathable active films with self-cleaning and antibacterial surfaces is based on the PET membranes obtained via ion track technology with a pore density of 10-7 cm-2 and a pore diameter of about 500 ± 15 nm, coated with a layer of TiO2 anatase, with a thickness of up to 80 nm. The formation of the photocatalytically active TiO2 anatase phase was confirmed using Raman analysis. Coating the PET membrane with a layer of TiO2 increased the hydrophobicity of the system (CA increased from 64.2 to 92.4, and the antibacterial activity was evaluated using Escherichia coli and Staphylococcus aureus bacteria with the logarithmic reduction factors of 3.34 and 4.24, respectively).

2.
Membranes (Basel) ; 13(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37103829

ABSTRACT

Cutting fluids are the main source of oily wastewater in the metalworking industry. This study deals with the development of antifouling composite hydrophobic membranes for treatment of oily wastewater. The novelty of this study is that a low energy electron-beam deposition technique was applied for a polysulfone (PSf) membrane with a molecular-weight cut-off of 300 kDa, which is promising for use in the treatment of oil-contaminated wastewater, by using polytetrafluoroethylene (PTFE) as target materials. The effect of the thickness of the PTFE layer (45, 660, and 1350 nm) on the structure, composition, and hydrophilicity of membranes was investigated using scanning electron microscopy, water contact angle (WCA) measurements, atomic force microscopy, and FTIR-spectroscopy. The separation and antifouling performance of the reference and modified membranes were evaluated during ultrafiltration of cutting fluid emulsions. It was found that the increase in the PTFE layer thickness results in the significant increase in WCA (from 56° up to 110-123° for the reference and modified membranes respectively) and decrease in surface roughness. It was found that cutting fluid emulsion flux of modified membranes was similar to the flux of the reference PSf-membrane (7.5-12.4 L·m-2·h-1 at 6 bar) while cutting fluid rejection (RCF) of modified membranes increased compared to the reference membrane (RCF = 58.4-93.3% for modified and RCF = 13% for the reference PSf membrane). It was established that despite the similar flux of cutting fluid emulsion, modified membranes demonstrate 5-6.5 times higher flux recovery ratio (FRR) compared to the reference membrane. The developed hydrophobic membranes were found to be highly efficient in oily wastewater treatment.

3.
Chemosphere ; 294: 133565, 2022 May.
Article in English | MEDLINE | ID: mdl-35041818

ABSTRACT

Cobalt-zinc ferrite nanoparticles were synthesized using environmentally friendly approach with quince extract as a reducing agent. Crystal structure and morphology of the obtained materials were studied by XRD, SEM-EDS, Mössbauer and IR spectroscopy. The synthesized nanoparticles have a cubic spinel structure and crystallite size ranging from 5 to 9 nm. The infrared spectra contain characteristic absorption bands for the MA-O (∼560 cm-1) and MB-O bonds (∼420 cm-1). Force constants were calculated for both tetrahedral and octahedral bonds. As the Co content increases, the force constant for the tetrahedral bond increases and the force constant for the octahedral bond decreases. The obtained ferrite nanoparticles have good magnetization as shown by VSM (in the range from 36 to 67 emu/g). Magnetic nanoparticles CoxZn1-xFe2O4 were also tested for induction heating with electromagnetic field. The sample with x (Co) = 0.4 has the highest specific absorption rate. The synthesized samples were tested as adsorbents using the Congo Red dye as model pollutant. The best adsorbent was pure zinc ferrite with the adsorption capacity of 24.7 mg/g. The catalytic activity of the obtained ferrites for the decomposition of H2O2 was studied as well. The most active catalyst was pure cobalt ferrite. Probably, the active centers are octahedral cobalt ions. Thus, the obtained magnetic nanoparticles can be used for the adsorptive removal of pollutants, catalytic decomposition of the H2O2 and low-frequency hyperthermia.


Subject(s)
Environmental Restoration and Remediation , Rosaceae , Adsorption , Cobalt/chemistry , Ferric Compounds , Hydrogen Peroxide , Plant Extracts , Zinc/analysis
4.
Molecules ; 26(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578897

ABSTRACT

Magnetic nanocomposites based on hydroxyapatite were prepared by a one-step process using the hydrothermal coprecipitation method to sinter iron oxides (Fe3O4 and γ-Fe2O3). The possibility of expanding the proposed technique for the synthesis of magnetic composite with embedded biologically active substance (BAS) of the 2-arylaminopyrimidine group was shown. The composition, morphology, structural features, and magnetic characteristics of the nanocomposites synthesized with and without BAS were studied. The introduction of BAS into the composite synthesis resulted in minor changes in the structural and physical properties. The specificity of the chemical bonds between BAS and the hydroxyapatite-magnetite core was revealed. The kinetics of the BAS release in a solution simulating the stomach environment was studied. The cytotoxicity of (HAP)FexOy and (HAP)FexOy + BAS composites was studied in vitro using the primary culture of human liver carcinoma cells HepG2. The synthesized magnetic composites with BAS have a high potential for use in the biomedical field, for example, as carriers for magnetically controlled drug delivery and materials for bone tissue engineering.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Ferric Compounds/chemistry , Liver Neoplasms/drug therapy , Magnetite Nanoparticles/administration & dosage , Nanocomposites/chemistry , Pyrimidines/chemistry , Apoptosis , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Humans , Liver Neoplasms/pathology , Magnetite Nanoparticles/chemistry
5.
Sensors (Basel) ; 20(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867214

ABSTRACT

: The main purpose of this work is to study the effectiveness of using FeCeOx nanocomposites doped with Nb2O5 for the purification of aqueous solutions from manganese. X-ray diffraction, energy-dispersive analysis, scanning electron microscopy, vibrational magnetic spectroscopy, and mössbauer spectroscopy were used as research methods. It is shown that an increase in the dopant concentration leads to the transformation of the shape of nanoparticles from spherical to cubic and rhombic, followed by an increase in the size of the nanoparticles. The spherical shape of the nanoparticles is characteristic of a structure consisting of a mixture of two phases of hematite (Fe2O3) and cerium oxide CeO2. The cubic shape of nanoparticles is typical for spinel-type FeNbO4 structures, the phase contribution of which increases with increasing dopant concentration. It is shown that doping leads not only to a decrease in the concentration of manganese in model solutions, but also to an increase in the efficiency of adsorption from 11% to 75%.

SELECTION OF CITATIONS
SEARCH DETAIL
...