Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Cancer Immunol Immunother ; 73(8): 143, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832955

ABSTRACT

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Prostatic Neoplasms , Animals , Humans , Male , Mice , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Mice, Knockout , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Microenvironment
2.
Heliyon ; 10(3): e24746, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318012

ABSTRACT

Objective: Half of the patients with acute large artery occlusion (LAO) have poor outcomes after endovascular treatment (EVT). Early complications such as cerebral edema and symptomatic intracranial hemorrhage (sICH) can lead to early neurological deterioration (END), which correlates with hemodynamics. This study aimed to identify the hemodynamic predictors of END and outcomes in LAO patients after EVT. Methods: A total of 76 patients with anterior circulation LAO who underwent EVT and received transcranial Doppler (TCD) monitoring were included. Bilateral middle cerebral artery (MCA) blood flow velocities (BFVs) were measured repeatedly within 1 week. Mean flow velocities (MFV) and MFV index (ipsilateral MFV/contralateral MFV) were calculated. The primary outcome was the incidence of END within 72 h. The secondary outcome was the functional outcome at 90 days-a good outcome was defined as a modified Rankin scale (mRS) score of 0-2, while a poor outcome was defined as an mRS score of 3-6. Results: A total of 13 patients (17.1 %) experienced END within 72 h, including 5 (38.5 %) with cerebral edema, 5 (38.5 %) with sICH, and 3 (23.0 %) with infarct progression. Multivariable logistic regression analysis showed that a higher 24 h MFV index was independently associated with END (aOR 10.5; 95 % CI 2.28-48.30, p = 0.003) and a poor 90-day outcome (aOR 5.10; 95 % CI 1.38-18.78, p = 0.014). The area under the receiver operating characteristic (ROC) curve (AUC) of the 24 h MFV index for predicting END was 0.807 (95 % CI 0.700-0.915, p = 0.0005), the sensitivity was 84.6 %, and the specificity was 66.7 %. At the 1-week TCD follow-up, patients who had poor 90-day outcomes showed significantly higher 1-week iMFV [73.5 (58.4-99.0) vs. 57.7 (45.3-76.3), p = 0.004] and MFV index [1.24 (0.98-1.57) vs.1.0 (0.87-1.15) p = 0.007]. A persistent high MFV index (PHMI) was independently associated with a poor outcome (aOR 7.77, 95 % CI 1.81-33.3, p = 0.006). Conclusion: TCD monitoring within 24 h after EVT in LAO patients can help predict END, while dynamic follow-up within 1 week is valuable in predicting clinical outcomes.

3.
Zhongguo Zhong Yao Za Zhi ; 49(2): 354-360, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403311

ABSTRACT

This study aimed to examine the morphological, physiological, and biochemical alterations occurring in Notopterygium incisum seeds throughout their developmental stages, with the objective of establishing a theoretical foundation for the cultivation of superior quality seeds. The experimental materials utilized in this study were the seeds of N. incisum at various stages of development following anthesis. Through the employment of morphological observation and plant physiology techniques, the external morphology, nutrients, enzyme activity, and endogenous hormones of the seeds were assessed. The results revealed a transition in seed coat color from light green to brown during the growth and development of N. incisum seeds. Additionally, as the seeds matured, a decrease in water content was observed. Conversely, starch content exhibited a progressive increase, while sucrose content displayed fluctuations. At 7 days after anthesis, the soluble sugar content attained its highest level of 4.52 mg·g~(-1), whereas the soluble protein content reached its maximum of 6.00 mg·g~(-1) at 14 days after anthesis and its minimum of 4.94 mg·g~(-1) at 42 days after anthesis. The activity of superoxide dismutase(SOD) exhibited an initial increase, followed by a decrease, and eventually reached a stable state. Conversely, the activities of catalase(CAT) and peroxidase(POD) demonstrated a decrease initially, followed by an increase, and then another decrease. The levels of the four endogenous hormones, namely gibberellin(GA_3), zeatin riboside(ZR), auxin(IAA), and abscisic acid(ABA), in the seeds displayed significant variations, with IAA and ABA exhibiting considerably higher levels compared to the other hormones. The levels of plant growth-promoting hormones, represented by IAA, generally displayed a pattern of initial increase followed by a subsequent decrease during seed development, while the plant growth-inhibiting hormone ABA showed the opposite trend. The findings indicate that the alterations in nutrient composition, antioxidant enzyme activity, and endogenous hormone levels vary throughout the maturation process of N. incisum seeds. These observations hold relevance for the cultivation of N. incisum seeds.


Subject(s)
Gibberellins , Plant Growth Regulators , Abscisic Acid , Seeds , Hormones/metabolism , Germination/physiology
4.
Biophys J ; 123(4): 478-488, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38234090

ABSTRACT

Coronaviruses not only pose significant global public health threats but also cause extensive damage to livestock-based industries. Previous studies have shown that 5-benzyloxygramine (P3) targets the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleocapsid (N) protein N-terminal domain (N-NTD), inducing non-native protein-protein interactions (PPIs) that impair N protein function. Moreover, P3 exhibits broad-spectrum antiviral activity against CoVs. The sequence similarity of N proteins is relatively low among CoVs, further exhibiting notable variations in the hydrophobic residue responsible for non-native PPIs in the N-NTD. Therefore, to ascertain the mechanism by which P3 demonstrates broad-spectrum anti-CoV activity, we determined the crystal structure of the SARS-CoV-2 N-NTD:P3 complex. We found that P3 was positioned in the dimeric N-NTD via hydrophobic contacts. Compared with the interfaces in MERS-CoV N-NTD, P3 had a reversed orientation in SARS-CoV-2 N-NTD. The Phe residue in the MERS-CoV N-NTD:P3 complex stabilized both P3 moieties. However, in the SARS-CoV-2 N-NTD:P3 complex, the Ile residue formed only one interaction with the P3 benzene ring. Moreover, the pocket in the SARS-CoV-2 N-NTD:P3 complex was more hydrophobic, favoring the insertion of the P3 benzene ring into the complex. Nevertheless, hydrophobic interactions remained the primary stabilizing force in both complexes. These findings suggested that despite the differences in the sequence, P3 can accommodate a hydrophobic pocket in N-NTD to mediate a non-native PPI, enabling its effectiveness against various CoVs.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Benzene , Middle East Respiratory Syndrome Coronavirus/chemistry , Antiviral Agents/pharmacology
5.
Soc Sci Med ; 340: 116475, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064820

ABSTRACT

Since the approvals of several vaccines against COVID-19 by the World Health Organization, a large body of research has studied the determinants of individuals' intention to be vaccinated against COVID-19 in a variety of societies. Vaccine intention is a complex construct rooted in the social context that informs the decision-making process. The underlying reasons for older adults' intention to receive the vaccination is even more important to health authorities in societies with large proportions of older adults. In this paper, we interview 27 women over age 55 in Singapore about their COVID-19 vaccine decision-making. Using a social-ecological framework of trust, we identify factors at both individual and institutional levels that build or undermine trust and underlie older women's decisions to receive COVID-19 vaccinations in an authoritarian regime. Findings show that both interpersonal trust and institutional trust contribute to vaccine uptake, however, trust can also contribute to delays in vaccination. Moreover, a sizable minority of respondents report that they were vaccinated not because of institutional trust, but because they felt compelled to do so. The results shed light on directions for future vaccination campaigns.


Subject(s)
COVID-19 , Vaccines , Female , Humans , Aged , Middle Aged , COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Singapore , Trust , Authoritarianism , Intention , Vaccination
6.
Life Sci ; 334: 122241, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37944639

ABSTRACT

AIMS: TAFA2, a cytokine specifically expressed in the central nervous system, plays a vital role in neuronal cell survival. TAFA2 deficiency has been correlated to various neurological disorders in mice and humans. However, the underlying mechanism remains elusive, especially its membrane-binding receptor through which TAFA2 functions. This study aimed to identify the specific binding receptor responsible for the anti-apoptotic effects of TAFA2. MAIN METHOD: Co-immunoprecipitation (Co-IP) and quantitative mass spectrometry-based proteomic analysis were employed to identify potential TAFA2 binding proteins in V5 knockin mouse brain lysates. Subsequent validation involved in vitro and in vivo Co-IP and pull-down using specific antibodies. The functional analysis included evaluating the effects of ADGRL1 knockout, overexpression, and Lectin-like domain (Lec) deletion mutant on TAFA2's anti-apoptotic activity and analyzing the intracellular signaling pathways mediated by TAFA2 through ADGRL1. KEY FINDINGS: Our study identified ADGRL1 as a potential receptor for TAFA2, which directly binds to TAFA2 through its lectin-like domain. Overexpression ADGRL1, but not ADGRL1ΔLec, induced apoptosis, which could be effectively suppressed by recombinant TAFA2 (rTAFA2). In ADGRL1-/- cells or re-introducing with ADGRL1ΔLec, responses to rTAFA2 in suppressing cell apoptosis were compromised. Increased cAMP, p-PKA, p-CREB, and BCL2 levels were also observed in response to rTAFA2 treatment, with these responses attenuated in ADGRL1-/- or ADGRL1ΔLec-expressing cells. SIGNIFICANCE: Our results demonstrated that TAFA2 directly binds to the lectin-like domain of ADGRL1, activating cAMP/PKA/CREB/BCL2 signaling pathway, which is crucial in preventing cell death. These results implicate TAFA2 and its receptor ADGRL1 as potential therapeutic targets for neurological disorders.


Subject(s)
Nervous System Diseases , Proteomics , Animals , Humans , Mice , Apoptosis , Cell Survival , Cyclic AMP Response Element-Binding Protein/metabolism , Lectins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction
7.
World J Clin Cases ; 11(11): 2489-2495, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37123320

ABSTRACT

BACKGROUND: There are few reported cases of intracranial large artery embolism due to carotid thrombosis caused by a neck massager. Herein we report such a case. CASE SUMMARY: A 49-year-old woman presented with left limb weakness and dysarthria after a history of neck massage for 1 mo. Neurological examination showed left central facial paralysis and left hemiparesis with a National Institutes of Health Stroke Scale score of 12. Brain magnetic resonance imaging revealed restricted diffusion on diffusion-weighted imaging in the right parietal and temporal lobes. Computed tomography angiography (CTA) indicated M3 segment embolism of the right middle cerebral artery. Neck CTA revealed thrombosis of the bilateral common carotid arteries. Carotid ultrasound showed thrombosis in the bilateral common carotid arteries (approximately 2 cm below the proximal end of the carotid sinus), and contrast-enhanced ultrasound did not suggest enhancement. No hypertension, diabetes, heart disease, vasculitis, or thrombophilia was found after admission. After 1 wk of treatment with aspirin 200 mg and atorvastatin 40 mg, a carotid ultrasound reexamination showed that the thrombosis had significantly reduced. CONCLUSION: Neck massager may cause carotid artery thrombosis.

8.
ACS Omega ; 8(9): 8885-8893, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910976

ABSTRACT

Traditional methods for synthesizing complex oligosaccharides currently developed are not efficient, requiring a new glycosylation methodology. Herein, using phosphotungstic acid (PTA) as a catalyst has demonstrated to be a simple possibility for carbohydrate synthesis. The methodology is engineered into a PTA-catalyzed thioglycoside preparation under microwave conditions and de-O-acetylation of carbohydrates. These easier operations and convenient protocols display a wide substrate scope. Moreover, both methods can be developed into a one-pot reaction for the efficient synthesis of carbohydrate analogues.

9.
Plant Dis ; 107(6): 1785-1793, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36415892

ABSTRACT

Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, is one of the most devastating oomycete diseases of soybean in Illinois. Single resistant genes (Rps) are used to manage this pathogen but P. sojae has adapted to Rps, causing failure of resistance in many regions. In addition to P. sojae, recent reports indicate that P. sansomeana could also cause root rot in soybean. Soil samples and symptomatic plants were collected across 40 Illinois counties between 2016 and 2018. P. sojae (77%) was more abundant than P. sansomeana (23%) across Illinois fields. Both species were characterized by virulence, aggressiveness, and fungicide sensitivity. Virulence of all P. sojae isolates was evaluated using the hypocotyl inoculation technique in 13 soybean differentials. Aggressiveness was evaluated in the greenhouse by inoculating a susceptible cultivar and measuring root and shoot dry weight. On average, P. sojae isolates were able to cause disease on six soybean differentials. P. sojae was more aggressive than P. sansomeana. All isolates were sensitive to azoxystrobin, ethaboxam, mefenoxam, and metalaxyl. The characterization of the population of species associated with PRR will inform management decisions for this disease in Illinois.


Subject(s)
Fungicides, Industrial , Phytophthora , Disease Resistance/genetics , Glycine max/genetics , Fungicides, Industrial/pharmacology , Phytophthora/genetics , Virulence , Illinois
10.
Organ Transplantation ; (6): 585-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978502

ABSTRACT

With gradual maturity of surgical technique of heart transplantation, extensive use of immunosuppressants and the improvement of organ distribution system, the shortage of donor heart has become a bottleneck issue restricting the development of heart transplantation in clinical practice. How to expand the donor pool for heart transplantation remains to be urgently solved. In recent years, with the development of science and technology and the application of new technology, groundbreaking progresses have been made on how to expand the donor pool for heart transplantation within the transplantation community. Multiple research results have been gradually translated into clinical practice, driving the development of heart transplantation in clinical settings. In this article, the latest technologies and strategies to expand the donor pool for heart transplantation were reviewed, the roles of organ preservation technology, use of marginal donor heart, xenotransplantation, artificial heart and bioartificial heart in alleviating the shortage of donor heart were investigated, and existing challenges and future directions to expand the donor pool for heart transplantation were summarized, aiming to provide reference for subsequent development of heart transplantation in clinical practice.

11.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3333-3339, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38511372

ABSTRACT

Grading seeds based on grain size is an effective measure to improve population regularity degree and increase the yield of summer maize. Taking Denghai 605 as the experimental material, we set up a field experiment with treatments based on grain size: large seeds (L), medium-round seeds (MR), medium-flat seeds (MF), medium-round and medium-flat mixed seeds (MRF), and small seeds (S), with no-grading seeds as control (CK). We investigated seedling emergence rate, population regularity degree (including height, ear height and stem diameter), seedling sturdiness index, photosynthetic characteristics, dry matter accumulation and distribution characteristics, and yield. The results showed that the emergence rate followed an order of L>MR>MRF>MF>CK>S, with that of L treatment differed little from MR, MF and MRF treatments, but being significantly higher than S and CK treatments. Plant height and stem diameter population regularity degree of MRF treatment before seven-leaf stage was not different from those of L, MR, MF and S treatments, but significantly higher than those of CK. At the tasseling stage, all treatments had higher population regularity degree of plant height than other stages. Ear height population regularity degree of L, MR, MF, MRF, and S increased by 11.1%, 10.3%, 9.5%, 7.1%, and 6.4% compared with CK, respectively. The seedling sturdiness index of MRF treatment increased by 36.7% compared with S treatment, but was not significantly different from L treatment. The leaf area index of the L and MRF treatments was significantly higher than that of CK, and both had higher population photosynthetic properties. The population dry matter accumulation showed a pattern as L>MR>MRF>MF>CK>S. There was no significant difference among L, MR, and MRF treatments, but that in L being obviously higher than MF, CK, and S treatments. After seed grading, the number of harvested ears of the L and MRF treatments increased significantly, and the yield were shown as L>MR>MRF>MF>CK>S. There was no difference between the yield of MRF, MR and MF treatments. In conclusion, the performance of L treatment was improved but the number was small. Considering the grading cost and yield, the MRF treatment can save the seed amounts of sowing, realize mechanized sowing and precision sowing.


Subject(s)
Seeds , Zea mays , Edible Grain , Plant Leaves , Photosynthesis , Seedlings
12.
Molecules ; 27(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36558098

ABSTRACT

Although citrus peel is a waste material, it contains a variety of bioactive components. As our preliminary findings showed that citrus peels fermented with Saccharomyces cerevisiae T1 contained increased levels of anti-obesity flavonoids, the objective of this study was to prepare fermented citrus peel and to investigate its effect on ameliorating obesity in Sprague Dawley (SD) rats fed with a high-fat diet (HFD). After fermentation, the amounts of limonene, nobiletin and 3-methoxynobiletin in citrus peel were markedly increased. SD rats were fed with an HFD for 10 weeks, followed by fermented citrus peel-containing HFD (0.3% or 0.9% w/w) for 6 weeks. Compared with those fed with an HFD alone, lower levels of body weight, visceral fat, body fat percentage, blood triglyceride, total cholesterol, low-density lipoprotein, malondialdehyde and hepatic adipose accumulation were observed in rats fed with fermented citrus peel. In parallel, hepatic levels of acetyl-CoA carboxylase and fatty acid synthase were diminished, and the level of hormone sensitivity lipase in visceral fat was elevated. These results reveal fermented citrus peel is a promising natural product with beneficial effects of alleviating HFD-induced obesity.


Subject(s)
Citrus , Diet, High-Fat , Rats , Animals , Diet, High-Fat/adverse effects , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Obesity/drug therapy , Obesity/etiology , Liver
13.
Biology (Basel) ; 11(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421382

ABSTRACT

Serine-threonine kinase 10 (STK10) is a member of the STE20/p21-activated kinase (PAK) family and is predominantly expressed in immune organs. Our previous reports suggested that STK10 participates in the growth and metastasis of prostate cancer via in vitro and in vivo data. However, the correlation between STK10 and the tumor microenvironment (TME) remains unclear. In this study, we assessed the relationship between STK10 and the immune cells in the tumor microenvironment of prostate cancer through bioinformatic analysis, and investigated the role of Stk10 in tumor growth using an Stk10 knockout mouse model. The results showed that STK10 is significantly associated with the tumor-infiltrating immune cells including lymphocytes, neutrophils, macrophages and dendritic cells. The target deletion of host Stk10 results in increased tumor growth, due to decreased activated/effector cytotoxic T lymphocytes (CTLs) and increased vessel density in the TME. In conclusion, we demonstrate that host Stk10 is involved in the host anti-tumor response by modulating the activated tumor-infiltrated CTLs and angiogenesis.

15.
Biology (Basel) ; 11(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35741343

ABSTRACT

Glycosylation occurring at either lipids, proteins, or sugars plays important roles in many biological systems. In nature, enzymatic glycosylation is the formation of a glycosidic bond between the anomeric carbon of the donor sugar and the functional group of the sugar acceptor. This study found novel glycoside anomers without an anomeric carbon linkage of the sugar donor. A glycoside hydrolase (GH) enzyme, amylosucrase from Deinococcus geothermalis (DgAS), was evaluated to glycosylate ganoderic acid F (GAF), a lanostane triterpenoid from medicinal fungus Ganoderma lucidum, at different pH levels. The results showed that GAF was glycosylated by DgAS at acidic conditions pH 5 and pH 6, whereas the activity dramatically decreased to be undetectable at pH 7 or pH 8. The biotransformation product was purified by preparative high-performance liquid chromatography and identified as unusual α-glucosyl-(2→26)-GAF and ß-glucosyl-(2→26)-GAF anomers by mass and nucleic magnetic resonance (NMR) spectroscopy. We further used DgAS to catalyze another six triterpenoids. Under the acidic conditions, two of six compounds, ganoderic acid A (GAA) and ganoderic acid G (GAG), could be converted to α-glucosyl-(2→26)-GAA and ß-glucosyl-(2→26)-GAA anomers and α-glucosyl-(2→26)-GAG and ß-glucosyl-(2→26)-GAG anomers, respectively. The glycosylation of triterpenoid aglycones was first confirmed to be converted via a GH enzyme, DgAS. The novel enzymatic glycosylation-formed glycoside anomers opens a new bioreaction in the pharmaceutical industry and in the biotechnology sector.

16.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2597-2604, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718477

ABSTRACT

Rhizosphere soil microbial community and its diversity are important for the structure and functions of medicinal plant ecosystem. In this study, based on high-throughput sequencing, rhizosphere soil microbial diversity, and yield and quality of rhizome and root of Notopterygium incisum cultivated alone(control, CK) and intercropped with Vicia faba(QH) were analyzed, which is expected to lay a basis for optimization of the cultivation mode and ecological production of N. incisum. RESULTS:: showed that the rhizosphere soil bacteria of N. incisum were dominated by Proteobacteria and Bacteroides, with the relative abundance of 50.38%-51.95% and 16.36%-17.02%, respectively. Soil bacterial community at the phylum level was not significantly different between CK and QH. At the genus level, the relative abundance of MND1(3.54%), Spinstomonas(3.50%), Nitrospira(1.53%), and Rhizobacter(1.05%) was significantly higher and that of Gemmatimonas, Candidatus_Solibacter, and Bryophytes was lower in QH treatment than in the CK. The plant height, leaf length, leaf width, and petiole length of N. incisum in QH treatment was significantly increased and the underground biomass rose by 71.43% compared with those in the CK. Thus, intercropping with V. faba promoted the aboveground growth of N. incisum and improved the yield of root and rhizome. Moreover, the content of notopterol and isoimperatorin increased by 37.96% and 4.09% in QH treatment, respectively, indicating that the intercropping with V. faba boosted the accumulation of secondary metabolites in N. incisum. Pearson's correlation analysis showed that the soil bacterial community was mainly influenced by the soil factors including the content of soil available nutrients, soil organic matter, pH value, and soil water. The influence was in the order: total potassium>total nitrogen>pH>organic matter>available potassium>soil water content>available nitrogen>available phosphorus. In conclusion, the intercropping with V. faba altered soil microenvironment and also increased the yield and accumulation of secondary metabolites of N. incisum, which is a promising ecological planting model for N. incisum.


Subject(s)
Apiaceae , Vicia faba , Agriculture , Apiaceae/metabolism , Ecosystem , Nitrogen/metabolism , Plant Roots , Potassium , Rhizosphere , Soil/chemistry , Soil Microbiology , Vicia faba/metabolism , Vicia faba/microbiology , Water/metabolism
17.
Front Mol Biosci ; 9: 871499, 2022.
Article in English | MEDLINE | ID: mdl-35517857

ABSTRACT

Epidemics caused by coronaviruses (CoVs), namely the severe acute respiratory syndrome (SARS) (2003), Middle East respiratory syndrome (MERS) (2012), and coronavirus disease 2019 (COVID-19) (2019), have triggered a global public health emergency. Drug development against CoVs is inherently arduous. The nucleocapsid (N) protein forms an oligomer and facilitates binding with the viral RNA genome, which is critical in the life cycle of the virus. In the current study, we found a potential allosteric site (Site 1) using PARS, an online allosteric site predictor, in the CoV N-N-terminal RNA-binding domain (NTD) to modulate the N protein conformation. We identified 5-hydroxyindole as the lead via molecular docking to target Site 1. We designed and synthesized four 5-hydroxyindole derivatives, named P4-1 to P4-4, based on the pose of 5-hydroxyindole in the docking model complex. Small-angle X-ray scattering (SAXS) data indicate that two 5-hydroxyindole compounds with higher hydrophobic R-groups mediate the binding between N-NTD and N-C-terminal dimerization domain (CTD) and elicit high-order oligomerization of the whole N protein. Furthermore, the crystal structures suggested that these two compounds act on this novel cavity and create a flat surface with higher hydrophobicity, which may mediate the interaction between N-NTD and N-CTD. Taken together, we discovered an allosteric binding pocket targeting small molecules that induces abnormal aggregation of the CoV N protein. These novel concepts will facilitate protein-protein interaction (PPI)-based drug design against various CoVs.

18.
Hum Cell ; 35(4): 1071-1083, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35416622

ABSTRACT

Studies have indicated that RIG-I may act as a tumor suppressor and participate in the tumorigenesis of some malignant diseases. However, RIG-I induces distinct cellular responses via different downstream signaling pathways depending on the cell type. To investigate the biological function and underlying molecular mechanism of RIG-I in the tumorigenesis of melanoma, we constructed RIG-I knockout, RIG-I-overexpressing B16-F10 and RIG-I knockdown A375 melanoma cell lines, and analyzed the RIG-I-mediated change in the biological behavior of tumor cells in spontaneous and poly (I:C)-induced RIG-I activation. Cell proliferation, cell cycling, apoptosis and migration were detected by CCK-8 assay, BrdU incorporation assay, Annexin V-PI staining assay and Transwell assay, respectively. In vivo tumorigenicity was evaluated by tumor xenograft growth in nude mice and subsequently by Ki67 staining and TUNEL assays. Furthermore, Western blotting was utilized to explore the underlying mechanism of RIG-I in melanoma cells. Our data showed that RIG-I promotes apoptosis and inhibits proliferation by G1 phase cell cycle arrest in the melanoma cell lines. Mechanistically, RIG-I induced the phosphorylation of p38 MAPK and MAPK kinases MKK3 and MKK4. In conclusion, the current study demonstrated that RIG-I suppressed the development of melanoma by regulating the activity of the MKK/p38 MAPK signaling pathway, which is relevant to research on novel therapeutic targets for this malignant disease.


Subject(s)
DEAD Box Protein 58 , Melanoma , Mitogen-Activated Protein Kinase Kinases , Receptors, Immunologic , Skin Neoplasms , Animals , Apoptosis/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Humans , Melanoma/genetics , Mice , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/metabolism , Receptors, Immunologic/genetics , Signal Transduction/genetics , Skin Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Fungal Genet Biol ; 159: 103655, 2022 04.
Article in English | MEDLINE | ID: mdl-34954385

ABSTRACT

Northern corn leaf blight (NCLB) and sorghum leaf blight (SLB) are significant diseases of maize and sorghum, respectively, caused by the filamentous fungus Setosphaeria turcica. Strains of S. turcica are typically host-specific and infect either maize or sorghum. Host specificity in this pathogen is attributed to a single locus for maize and a second distinct locus for sorghum. To identify the genetic basis of host specificity in S. turcica, we generated a biparental population of S. turcica by crossing strains specific to maize and sorghum, phenotyped the population for leaf blight on sorghum and maize, genotyped the population to create a linkage map of S. turcica, and located candidate virulence regions. A total of 190 ascospores from 35 pseudothecia were isolated from the cross of maize and sorghum-specific strains. Greenhouse phenotyping of the biparental population (n = 144) showed independent inheritance of virulence, as indicated by a 1:1:1:1 segregation for virulence to maize, sorghum, both maize and sorghum, and avirulence to both crops. The population and host-specific parent strains were genotyped using genome skim sequencing on an Illumina NovaSeq 6000 platform resulting in over 780 million reads. A total of 32,635 variants including single nucleotide polymorphisms and indels were scored. There was evidence for a large deletion in the sorghum-specific strain of S. turcica. A genetic map consisting of 17 linkage groups spanning 3,069 centimorgans was constructed. Virulence to sorghum and maize mapped on distinct linkage groups with a significant QTL detected for virulence to maize. Furthermore, a single locus each for the in vitro traits hyphal growth rate and conidiation were identified and mapped onto two other linkage groups. In vitro traits did not correlate with in planta virulence complexity, suggesting that virulence on both hosts does not incur a fitness cost. Hyphal growth rate and conidiation were negatively correlated, indicating differences in hyphal growth versus dispersal ability for this pathogen. Identification of genetic regions underlying virulence specificity and saprotrophic growth traits in S. turcica provides a better understanding of the S. turcica- Andropogoneae pathosystem.


Subject(s)
Plant Diseases , Zea mays , Ascomycota , Chromosome Mapping , Genomics , Plant Diseases/microbiology , Virulence/genetics , Zea mays/microbiology
20.
Exp Ther Med ; 22(2): 851, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34149897

ABSTRACT

Prostate cancer (PCa) is one of the most common types of cancer and is a serious threat to men's health due to the high rate of incidence and metastasis. However, the exact underlying pathology of this malignant disease has yet to be fully elucidated. The ezrin-radixin-moesin (ERM) family of proteins are associated with the development and metastasis of various types of cancer. Serine threonine kinase 10 (STK10) is an ERM kinase that is involved in the activation of ERM proteins and serves essential roles in the aggregation and adhesion of lymphocytes. To evaluate the functional roles of STK10 in the pathogenesis of PCa, a STK10-knockout (KO) DU145 PCa cell line was generated using the CRISPR-Cas9 gene editing system, and the effects of STK10 deletion on tumor biological behaviors were further analyzed. The present data suggested that STK10 KO promoted PCa cell proliferation by inhibiting p38 MAPK activation and suppressed migration primarily via the inhibition of p38 MAPK signaling and ERM protein activation. To the best of our knowledge, this is the first study to provide evidence that STK10 plays important roles in the proliferation and migration of PCa cells, which will be useful for further investigation into the pathogenesis of this disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...