Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 28: 448-466, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37408797

ABSTRACT

Magnesium alloys containing biocompatible components show tremendous promise for applications as temporary biomedical devices. However, to ensure their safe use as biodegradeable implants, it is essential to control their corrosion rates. In concentrated Mg alloys, a microgalvanic coupling between the α-Mg matrix and secondary precipitates exists which results in increased corrosion rate. To address this challenge, we engineered the microstructure of a biodegradable Mg-Zn-RE-Zr alloy by friction stir processing (FSP), improving its corrosion resistance and mechanical properties simultaneously. The FS processed alloy with refined grains and broken and uniformly distributed secondary precipitates showed a relatively uniform corrosion morphology accompanied with the formation of a stable passive layer on the alloy surface. In vivo corrosion evaluation of the processed alloy in a small animal model showed that the material was well-tolerated with no signs of inflammation or harmful by-products. Remarkably, the processed alloy supported bone until it healed till eight weeks with a low in vivo corrosion rate of 0.7 mm/year. Moreover, we analyzed blood and histology of the critical organs such as liver and kidney, which showed normal functionality and consistent ion and enzyme levels, throughout the 12-week study period. These results demonstrate that the processed Mg-Zn-RE-Zr alloy offers promising potential for osseointegration in bone tissue healing while also exhibiting controlled biodegradability due to its engineered microstructure. The results from the present study will have profound benefit for bone fracture management, particularly in pediatric and elderly patients.

2.
PLoS One ; 16(3): e0247608, 2021.
Article in English | MEDLINE | ID: mdl-33770082

ABSTRACT

Air-conditioning systems make the most significant part of energy consumption in the residential sector. There is no denying that it is essential to produce a comfortable indoor thermal environment for residents in a building. The actual goal is to achieve thermal comfort level without putting too much cost on the ecological system by trying to conserve the amount of energy consumed. An effective way to help achieve such a goal is by incorporating thermal insulation in buildings. Thermal insulations help reduce thermal energy gained during the implementation of a desired thermal comfort level. This study aims to use an environmentally friendly nanoparticle of date pits to create thermal insulations that can be used in buildings. Different ratios of the nanoparticle of the date pits and sand composite were investigated. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the new materials. The material with nanoparticles of date pits and 50% by-volume epoxy provided good thermal insulation with thermal conductivity of 0.26 W/mK that could be used in the existing buildings. This has the potential to reduce the overall energy consumption by 4,494 kWh and thereby reduce CO2 emissions of a 570 m2 house by 1.8 tons annually. In conclusion, the future of using nanoparticles of date pits in construction is bright and promising due to their promising results.


Subject(s)
Construction Industry/methods , Construction Materials/analysis , Nanostructures/chemistry , Phoeniceae/chemistry , Seeds/chemistry , Conservation of Energy Resources/methods , Developing Countries/economics , Hot Temperature , Hydrogen Bonding , Microscopy, Electron, Scanning , Qatar , Sand , Spectroscopy, Fourier Transform Infrared , Thermal Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL
...