Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 27(6): 1235-40, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16298458

ABSTRACT

Many studies have been carried on peptides and genes encoding scorpion toxins from the venom of Mesobuthus martensii Karsch (synonym: Buthus martensii Karsch, BmK), such as Na+, K+ and Cl- channel modulators. In this study, a novel calcium channel toxin-like gene BmCa1 was isolated and characterized from the venom of Mesobuthus martensii Karsch. First, a partial cDNA sequence of the Ca2+ channel toxin-like gene was identified by random sequencing method from a venomous gland cDNA library of Mesobuthus martensii Karsch. The full-length sequence of BmCa1 was then obtained by 5'RACE technique. The peptide deduced from BmCa1 precursor nucleotide sequence contains a 27-residue signal peptide and a 37-residue mature peptide. Although BmCa1 and other scorpion toxins are different at the gene and protein primary structure levels, BmCa1 has the same precursor nucleotide organization and cysteine arrangement as that of the first subfamily members of calcium channel scorpion toxins. Genomic DNA sequence of BmCa1 was also cloned by PCR. Sequence analysis showed that BmCa1 gene consists of three exons separated by two introns of 72 bp and 1076 bp in length, respectively. BmCa1 is the first calcium channel toxin-like gene cloned from the venom of Mesobuthus martensii Karsch and potentially represents a novel class of calcium channel toxins in scorpion venoms.


Subject(s)
Scorpion Venoms/chemistry , Amino Acid Sequence , Animals , Base Sequence , Calcium Channels/chemistry , Cloning, Molecular , DNA, Complementary/metabolism , Exons , Gene Library , Introns , Molecular Sequence Data , Polymerase Chain Reaction , Scorpions , Sequence Homology, Amino Acid
2.
J Biochem Mol Toxicol ; 18(4): 187-95, 2004.
Article in English | MEDLINE | ID: mdl-15452884

ABSTRACT

Scorpion venom contains many small polypeptide toxins, which can modulate Na(+), K(+), Cl(-), and Ca(2+) ion-channel conductance in the cell membrane. A full-length cDNA sequence encoding a novel type of K(+)-channel toxin (named BmTxKS4) was first isolated and identified from a venom gland cDNA library of Buthus martensii Karsch (BmK). The encoded precursor contains 78 amino acid residues including a putative signal peptide of 21 residues, propeptide of 11 residues, and a mature peptide of 43 residues with three disulfide bridges. BmTxKS4 shares the identical organization of disulfide bridges with all the other short-chain K(+)-channel scorpion toxins. By PCR amplification of the genomic region encoding BmTxKS4, it was shown that BmTxKS4 composed of two exons is disrupted by an intron of 87 bp inserted between the first and the second codes of Phe (F) in the encoding signal peptide region, which is completely identical with that of the characterized scorpion K(+)-channel ligands in the size, position, consensus junctions, putative branch point, and A+T content. The GST-BmTxKS4 fusion protein was successfully expressed in BL21 (DE3) and purified with affinity chromatography. About 2.5 mg purified recombinant BmTxKS4 (rBmTxKS4) protein was obtained by treating GST-BmTxKS4 with enterokinase and sephadex chromatography from 1 L bacterial culture. The electrophysiological activity of 1.0 microM rBmTxKS4 was measured and compared by whole cell patch-clamp technique. The results indicated that rBmTxKS4 reversibly inhibited the transient outward K(+) current (I(to)), delayed inward rectifier K(+) current (I(k1)), and prolonged the action potential duration of ventricular myocyte, but it has no effect on the action potential amplitude. Taken together, BmTxKS4 is a novel subfamily member of short-strain K(+)-channel scorpion toxin.


Subject(s)
Potassium Channel Blockers/chemistry , Scorpion Venoms/chemistry , Scorpions/chemistry , Toxins, Biological/chemistry , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Escherichia coli , Genome , Heart/drug effects , In Vitro Techniques , Membrane Potentials/drug effects , Molecular Sequence Data , Potassium Channel Blockers/isolation & purification , Rabbits , Recombinant Fusion Proteins/biosynthesis , Scorpions/genetics , Sequence Homology, Amino Acid , Toxins, Biological/biosynthesis , Toxins, Biological/genetics , Toxins, Biological/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...