Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Traffic Inj Prev ; 24(sup1): S23-S31, 2023.
Article in English | MEDLINE | ID: mdl-37267001

ABSTRACT

OBJECTIVE: In 2020, 17% of all crash fatalities were individuals aged 65 years or older. Crash data also revealed that for older occupants, thoracic related injuries are among the leading causes of fatality. Historically, the majority of near-side impact postmortem human subjects (PMHS) studies used a generic load wall to capture external loads that were applied to PMHS. While these data were helpful in documenting biofidelity, they did not represent a realistic response an occupant would undergo in a near-side crash. The objective of this research was to test small, elderly female PMHS in a repeatable, realistic near-side impact crash scenario to investigate current injury criteria as they relate to this vulnerable population. METHOD: Ten small, elderly PMHS were subjected to a realistic near-side impact loading condition. The PMHS were targeted to be elderly females age 60+, approximately 5th percentile in height and weight, with osteopenic areal bone mineral density. Each subject was seated on a mass-production seat, equipped with a side airbag and standard three-point restraint with a pretensioner. Other boundary conditions included an intruding driver's side door. PMHS instrumentation included strain gages on ribs 3-10 bilaterally to identify fracture timing. Two chestbands were used to measure chest deflection, one at the level of the axilla and one at the level of the xiphoid process. RESULTS: Injuries observed included rib fractures, particularly on the struck side, and in multiple cases a flail chest was observed. Eight of ten subjects resulted in AIS3+ thoracic injuries, despite previously tested ATDs predicting less than a 10% chance of AIS3+ injury. Subjects crossed the threshold for AIS3 injury in the range of only 1% - 9% chest compression. Additionally, mechanisms of injury varied, as some injuries were incurred by door interactions while others came during airbag interactions. CONCLUSIONS: This research points to two areas of concern that likely require further analysis: (1) the appropriateness of potentially oversimplified PMHS testing to establish injury thresholds and define injury criteria for complicated crash scenarios; (2) the importance of identifying the precise timing of injuries to better understand the effect of current passive restraint systems.


Subject(s)
Air Bags , Rib Fractures , Thoracic Injuries , Aged , Female , Humans , Accidents, Traffic , Air Bags/adverse effects , Biomechanical Phenomena , Cadaver , Rib Fractures/epidemiology , Rib Fractures/etiology , Thoracic Injuries/epidemiology , Thoracic Injuries/etiology , Middle Aged
2.
Ann Biomed Eng ; 49(2): 802-811, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32940897

ABSTRACT

Previous studies indicate that seatbelts may require supplementary restraints to increase their effectiveness in far-side impacts. This study aimed to evaluate the effectiveness of a novel, far-side-specific airbag in restraining and preventing injuries in far-side impacts, and to evaluate the WorldSID's response to the presence of a far-side airbag. A series of tests with three Post-Mortem Human Subjects and the WorldSID was conducted in a vehicle-based sled environment equipped with a far-side airbag. Results of these tests were evaluated and compared to a previous test series conducted without the airbag. All of the PMHS retained the shoulder belt on the shoulder. The airbag significantly reduced PMHS injury severity and maximum lateral head excursion. While the WorldSID exhibited a similar decrease in lateral excursion, it was unable to represent PMHS thoracic deflection or injury probability, and it consistently slipped out of the shoulder belt. This indicates that the WorldSID is limited both in its ability to evaluate the effect of changes in the seatbelt system and in its ability to predict thoracic injury risk and assess airbag-related injury mitigation countermeasures.


Subject(s)
Accidents, Traffic , Air Bags , Spinal Injuries , Thoracic Injuries , Acceleration , Aged , Biomechanical Phenomena , Cadaver , Humans , Middle Aged , Seat Belts , Shoulder/physiology , Thorax/physiology
3.
Stapp Car Crash J ; 63: 83-126, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32311053

ABSTRACT

Far-side kinematics and injury are influenced by the occupant environment. The goal of the present study was to evaluate in-vehicle human far-side kinematics, kinetics and injury and to assess the ability of the WorldSID to represent them. A series of tests with five Post-Mortem Human Subjects and the WorldSID were conducted in a vehicle-based sled test environment. The surrogates were subjected to a far-side pulse of 16.5 g in a 75-degree impact direction. The PMHS were instrumented with 6 degree-of-freedom sensors to the head, spine and pelvis, a chestband, strain gauge rosettes, a 3D tracking array mounted to the head and multiple single 3D tracking markers on the rest of the body. The WorldSID lateral head excursion was consistent with the PMHS. However, forward head excursion did not follow a PMHS-like trajectory after the point of maximum lateral excursion. All but one PMHS retained the shoulder belt on the shoulder during the entire test. However, the WorldSID consistently slipped out of the shoulder belt. The PMHS sustained an average of five rib fractures for which the seatbelt was observed to be the largest contributor. The WorldSID showed a maximum rib deflection of 25 mm. The first rib fracture occurred no later than 50 ms into the event. Anatomical differences between the WorldSID and the PMHS rib cage prevented the WorldSID from capturing the injury mechanisms related to interactions of the occupant with the seatbelt and the seat.


Subject(s)
Accidents, Traffic , Seat Belts , Acceleration , Biomechanical Phenomena , Cadaver , Fractures, Bone , Humans , Wounds and Injuries
4.
Ann Biomed Eng ; 45(11): 2663-2672, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28770357

ABSTRACT

The purpose of this study was to examine the effects of chestbands on both global and local thoracic response. A total of twenty-two frontal impacts were imposed on two post-mortem human surrogates, using a 23 kg pneumatic impactor. Impacts were at speeds of 0.8, 1.0, 1.5, and 2.0 m/s, and there were either 0, 1, or 2 chestbands on the subject. The baseline configuration of 0.8 m/s with zero chestbands was tested initially, then was repeated intermittently throughout testing. For each impact speed, the difference between response with and without chestbands was calculated. Results showed average changes of +0.79 mm in chest deflection, -0.42 N/mm in thoracic stiffness, and -96 µS in rib strain when chestbands were used, none of which were statistically significant (t test, p = 0.35, p = 0.42 and, p = 0.42, respectively). The results provide support for the commonly employed assumption that chestbands do not alter the response of the thorax in frontal impact.


Subject(s)
Thorax/physiology , Acceleration , Accidents, Traffic , Aged, 80 and over , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...