Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Clin Pathol ; 76(9): 591-598, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35534200

ABSTRACT

AIMS: A robust immunohistochemistry (IHC) assay was developed to detect lymphocyte-activation gene 3 (LAG-3) expression by immune cells (ICs) in tumour tissues. LAG-3 is an immuno-oncology target with demonstrable clinical benefit, and there is a need for a standardised, well-characterised assay to measure its expression. This study aims to describe LAG-3 scoring criteria and present the specificity, sensitivity, analytical precision and reproducibility of this assay. METHODS: The specificity of the assay was investigated by antigen competition and with LAG3 knockout cell lines. A melanin pigment removal procedure was implemented to prevent melanin interference in IHC interpretation. Formalin-fixed paraffin-embedded (FFPE) human melanoma samples with a range of LAG-3 expression levels were used to assess the sensitivity and analytical precision of the assay with a ≥1% cut-off to determine LAG-3 positivity. Interobserver and intraobserver reproducibility were evaluated with 60 samples in intralaboratory studies and 70 samples in interlaboratory studies. RESULTS: The LAG-3 IHC method demonstrated performance suitable for analysis of LAG-3 IC expression in clinical melanoma samples. The pretreatment step effectively removed melanin pigment that could interfere with interpretation. LAG-3 antigen competition and analysis of LAG3 knockout cell lines indicated that the 17B4 antibody clone binds specifically to LAG-3. The intrarun repeatability, interday, interinstrument, interoperator and inter-reagent lot reproducibility demonstrated a high scoring concordance (>95%). The interobserver and intraobserver reproducibility and overall interlaboratory and intralaboratory reproducibility also showed high scoring concordance (>90%). CONCLUSIONS: We have demonstrated that the assay reliably assesses LAG-3 expression in FFPE human melanoma samples by IHC.


Subject(s)
Melanins , Melanoma , Humans , Immunohistochemistry , Reproducibility of Results , Melanoma/diagnosis , Melanoma/genetics , Melanoma/pathology
2.
J Appl Physiol (1985) ; 119(1): 16-26, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25930021

ABSTRACT

We previously showed that a single bolus of "doubly-labeled" water ((2)H2 (18)O) can be used to simultaneously determine energy expenditure and turnover rates (synthesis and degradation) of tissue-specific lipids and proteins by modeling labeling patterns of protein-bound alanine and triglyceride-bound glycerol (Bederman IR, Dufner DA, Alexander JC, Previs SF. Am J Physiol Endocrinol Metab 290: E1048-E1056, 2006). Using this novel method, we quantified changes in the whole body and tissue-specific energy balance in a rat model of simulated "microgravity" induced by hindlimb suspension unloading (HSU). After chronic HSU (3 wk), rats exhibited marked atrophy of skeletal and cardiac muscles and significant decrease in adipose tissue mass. For example, soleus muscle mass progressively decreased 11, 43, and 52%. We found similar energy expenditure between control (90 ± 3 kcal · kg(-1)· day(-1)) and hindlimb suspended (81 ± 6 kcal/kg day) animals. By comparing food intake (∼ 112 kcal · kg(-1) · day(-1)) and expenditure, we found that animals maintained positive calorie balance proportional to their body weight. From multicompartmental fitting of (2)H-labeling patterns, we found significantly (P < 0.005) decreased rates of synthesis (percent decrease from control: cardiac, 25.5%; soleus, 70.3%; extensor digitorum longus, 44.9%; gastrocnemius, 52.5%; and adipose tissue, 39.5%) and rates of degradation (muscles: cardiac, 9.7%; soleus, 52.0%; extensor digitorum longus, 27.8%; gastrocnemius, 37.4%; and adipose tissue, 50.2%). Overall, HSU affected growth of young rats by decreasing the turnover rates of proteins in skeletal and cardiac muscles and adipose tissue triglycerides. Specifically, we found that synthesis rates of skeletal and cardiac muscle proteins were affected to a much greater degree compared with the decrease in degradation rates, resulting in large negative balance and significant tissue loss. In contrast, we found a small decrease in adipose tissue triglyceride synthesis paired with a large decrease in degradation, resulting in smaller negative energy balance and loss of fat mass. We conclude that HSU in rats differentially affects turnover of muscle proteins vs. adipose tissue triglycerides.


Subject(s)
Adipose Tissue/metabolism , Hindlimb Suspension/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Triglycerides/metabolism , Adipose Tissue/pathology , Animals , Body Water/metabolism , Body Weight/physiology , Eating/physiology , Energy Metabolism/physiology , Growth/physiology , Kinetics , Male , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Rats , Rats, Sprague-Dawley
3.
BMC Clin Pathol ; 11: 14, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22188997

ABSTRACT

BACKGROUND: Histopathology is the standard method for cancer diagnosis and grading to assess aggressiveness in clinical biopsies. Molecular biomarkers have also been described that are associated with cancer aggressiveness, however, the portion of tissue analyzed is often processed in a manner that is destructive to the tissue. We present here a new method for performing analysis of small molecule biomarkers and histology in exactly the same biopsy tissue. METHODS: Prostate needle biopsies were taken from surgical prostatectomy specimens and first fixed, each in a separate vial, in 2.5 ml of 80% methanol:water. The biopsies were fixed for 24 hrs at room temperature and then removed and post-processed using a non-formalin-based fixative (UMFIX), embedded, and analyzed by hematoxylin and eosin (H&E) and by immunohistochemical (IHC) staining. The retained alcohol pre-fixative was analyzed for small molecule biomarkers by mass spectrometry. RESULTS: H&E analysis was successful following the pre-fixation in 80% methanol. The presence or absence of tumor could be readily determined for all 96 biopsies analyzed. A subset of biopsy sections was analyzed by IHC, and cancerous and non-cancerous regions could be readily visualized by PIN4 staining. To demonstrate the suitability for analysis of small molecule biomarkers, 28 of the alcohol extracts were analyzed using a mass spectrometry-based metabolomics platform. All extracts tested yielded successful metabolite profiles. 260 named biochemical compounds were detected in the alcohol extracts. A comparison of the relative levels of compounds in cancer containing vs. non-cancer containing biopsies showed differences for 83 of the compounds. A comparison of the results with prior published reports showed good agreement between the current method and prior reported biomarker discovery methods that involve tissue destructive methods. CONCLUSIONS: The Molecular Preservation by Extraction and Fixation (mPREF) method allows for the analysis of small molecule biomarkers from exactly the same tissue that is processed for histopathology.

5.
Nature ; 457(7231): 910-4, 2009 Feb 12.
Article in English | MEDLINE | ID: mdl-19212411

ABSTRACT

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.


Subject(s)
Disease Progression , Metabolomics , Prostatic Neoplasms/metabolism , Sarcosine/metabolism , Androgens/physiology , Cell Line , Cell Line, Tumor , Gene Knockdown Techniques , Glycine N-Methyltransferase/genetics , Glycine N-Methyltransferase/metabolism , Humans , Male , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Sarcosine/analysis , Sarcosine/urine , Sarcosine Dehydrogenase/metabolism , Signal Transduction
6.
Funct Integr Genomics ; 3(4): 160-70, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12898394

ABSTRACT

We describe a method for gene function discovery and chemical mode-of-action analysis via nutrient utilization using a high throughput Nutritional Profiling platform suitable for filamentous microorganisms. We have optimized the growth conditions for each fungal species to produce reproducible optical density growth measurements in microtiter plates. We validated the Nutritional Profiling platform using a nitrogen source utilization assay to analyze 21 Aspergillus nidulans strains with mutations in the master nitrogen regulatory gene, areA. Analysis of these data accurately reproduced expected results and provided new data to demonstrate that this platform is suitable for fine level phenotyping of filamentous fungi. Next, we analyzed the differential responses of two fungal species to a glutamine synthetase inhibitor, illustrating chemical mode-of-action analysis. Finally, a comparative phenotypic study was performed to characterize carbon catabolite repression in four fungal species using a carbon source utilization assay. The results demonstrate differentiation between two Aspergillus species and two diverse plant pathogens and provide a wealth of new data on fungal nutrient utilization. Thus, these assays can be used for gene function and chemical mode-of-action analysis at the whole organism level as well as interspecies comparisons in a variety of filamentous fungi. Additionally, because uniform distribution of growth within wells is maintained, comparisons between yeast and filamentous forms of a single organism can be performed.


Subject(s)
Fungi/genetics , Fungi/metabolism , Gene Expression Profiling , Mutation , Aminobutyrates/pharmacology , Aspergillus nidulans/genetics , Carbon/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/growth & development , Fungi/pathogenicity , Genes, Fungal , Glutamate-Ammonia Ligase/antagonists & inhibitors , Kinetics , Nitrogen/metabolism , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , Species Specificity , Substrate Specificity
7.
Nucleic Acids Res ; 31(16): 4822-7, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12907724

ABSTRACT

TAGKO is a Tn7-based transposition system for genome wide mutagenesis in filamentous fungi. The effects of transposon insertion on the expression of TAGKO alleles were examined in Magnaporthe grisea and Mycosphaerella graminicola. Northern analysis showed that stable, truncated transcripts were expressed in the TAGKO mutants. Mapping of the 3'-ends of TAGKO cDNAs revealed that they all contain Tn7 end sequences, regardless of the transposon orientation. Polyadenylation signals characteristic of eukaryotic genes, preceded by stop codons in all frames, are located in both ends of the bacterial transposon. Thus, TAGKO transcripts are prematurely polyadenylated, and truncated proteins are predicted to be translated in the fungal mutants. Depending on the extent of protein truncation, TAGKO mutations in HPD4 (encoding p-hydroxyphenylpyruvate dioxygenase) resulted in tyrosine sensitivity in the two fungi. Similarly, a particular M.grisea CBS1 (encoding cystathionine beta-synthase) TAGKO cDNA failed to complement cysteine auxotrophy in a yeast CBS mutant. TAGKO, therefore, represents a useful tool for in vivo study of truncated gene products in filamentous fungi.


Subject(s)
Ascomycota/genetics , DNA Transposable Elements/genetics , Eukaryotic Cells/metabolism , Poly A/genetics , RNA, Messenger/genetics , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , Ascomycota/enzymology , Base Sequence , Cystathionine beta-Synthase/genetics , DNA, Bacterial/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Genetic Complementation Test , Magnaporthe/enzymology , Magnaporthe/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Mutation , Poly A/metabolism , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
8.
Curr Genet ; 43(5): 358-63, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12743737

ABSTRACT

Dialkylglycine decarboxylase is a pyridoxal phosphate-dependent enzyme in the aminotransferases class III group of enzymes. The enzyme is unique in terms of catalyzing both decarboxylation and transamination. Although the enzymatic activity is present in some bacteria and fungi, the biological role is unclear. We identified and disrupted the dialkylglycine decarboxylase-encoding gene DGD1 in the wheat blotch fungus Mycosphaerella graminicola by transposon-arrayed gene knockout. The DGD1 gene is highly similar to dialkylglycine decarboxylase from the soil bacterium Burkholderia cepacia. Phylogenetic analysis of various class III aminotransferases showed that dialkylglycine decarboxylases from bacteria and fungi are found in a distinct cluster. Functional analysis revealed that dgd1 disruption mutants display wild-type morphology and pathogenicity to wheat. The dgd1 mutants cannot utilize 2-methylalanine as a sole nitrogen source, as assessed by large-scale nutritional utilization analysis. This is the first description of a mutant phenotype of the fungal dialkylglycine decarboxylase gene.


Subject(s)
Ascomycota/genetics , Carboxy-Lyases/genetics , Phylogeny , Amino Acid Sequence , Aminoisobutyric Acids/metabolism , Ascomycota/enzymology , Blotting, Southern , Carboxy-Lyases/metabolism , Chromosome Mapping , DNA Primers , Molecular Sequence Data , Sequence Analysis, DNA , Transformation, Genetic
9.
J Ind Microbiol Biotechnol ; 30(1): 57-69, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12545388

ABSTRACT

The toxic effects that organic solvents have on whole cells are important drawbacks in the application of these solvents in the production of fine chemicals by whole-cell stereoselective biotransformations. Although early studies found that organic solvents mainly destroyed the integrity of cell membranes by accumulating in the lipid bilayer of plasma membranes, the cellular metabolic responses to the presence of an organic solvent remain unclear. With the rapid development of genomics, it is possible to study cellular metabolism under perturbed conditions at the genome level. In this paper, the global gene expression profiles of Saccharomyces cerevisiae BY4743 grown in media with a high concentration of the organic solvent dimethyl sulfoxide (DMSO) were determined by microarray analysis of ~6,200 yeast open reading frames (ORFs). From cells grown in SD minimal medium containing 1.0% (v/v) DMSO, changes in transcript abundance greater than or equal to 2.5-fold were classified. Genomic analyses showed that 1,338 genes were significantly regulated by the presence of DMSO in yeast. Among them, only 400 genes were previously found to be responsive to general environmental stresses, such as temperature shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. The DMSO-responsive genes were involved in a variety of cellular functions, including carbohydrate, amino acid and lipid metabolism, cellular stress responses, and energy metabolism. Most of the genes in the lipid biosynthetic pathways were down-regulated by DMSO treatment, whereas genes involved in amino acid biosynthesis were mostly up-regulated. The results demonstrate that the application of microarray technology allows better interpretation of metabolic responses, and the information obtained will be useful for the construction of engineered yeast strains with better tolerance of organic solvents.


Subject(s)
Dimethyl Sulfoxide/pharmacology , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Solvents/pharmacology , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
10.
Curr Genet ; 42(2): 123-7, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12478391

ABSTRACT

TAGKO ( transposon- arrayed gene knock out) is a highly efficient method for gene discovery and gene function assignment in the rice blast fungus Magnaporthe grisea. Here, we report the application of genome-wide TAGKO to the wheat blotch fungus Mycosphaerella graminicola, including the successful development of electroporation-based transformation for this fungus. A M. graminicola genomic cosmid library was constructed and a pool of 250 cosmid clones was mutagenized by in vitro transposition. Sequence analysis identified 5,110 unique insertion events in the M. graminicola genome. Eleven transposon-tagged cosmid clones (TAGKO clones) were chosen and transformed into the wild-type strain by electroporation. Ten TAGKO clones out of 11 produced gene-specific mutants at a targeting frequency of 15-28%, significantly higher than that of conventional gene-disruption constructs. The remaining clone failed to produce viable mutants, thereby providing indirect evidence for the identification of an essential gene.


Subject(s)
Ascomycota/genetics , Genetic Engineering/methods , Cloning, Molecular , Cosmids/genetics , DNA Transposable Elements , Electroporation , Gene Targeting/methods , Mutation , Sequence Analysis, DNA , Transformation, Genetic , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...