Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 84(12): 2337-2352.e9, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870935

ABSTRACT

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.


Subject(s)
Polyubiquitin , Ribosomal Proteins , Ribosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Polyubiquitin/metabolism , Polyubiquitin/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Proteostasis , Cell Nucleus/metabolism
2.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205480

ABSTRACT

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with Ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs), Ubp2 and Ubp14, and E3 ligases, Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the Ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the Intranuclear Quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with Ribosomopathies.

3.
Mol Syst Biol ; 16(9): e9828, 2020 09.
Article in English | MEDLINE | ID: mdl-32939983

ABSTRACT

Essential genes tend to be highly conserved across eukaryotes, but, in some cases, their critical roles can be bypassed through genetic rewiring. From a systematic analysis of 728 different essential yeast genes, we discovered that 124 (17%) were dispensable essential genes. Through whole-genome sequencing and detailed genetic analysis, we investigated the genetic interactions and genome alterations underlying bypass suppression. Dispensable essential genes often had paralogs, were enriched for genes encoding membrane-associated proteins, and were depleted for members of protein complexes. Functionally related genes frequently drove the bypass suppression interactions. These gene properties were predictive of essential gene dispensability and of specific suppressors among hundreds of genes on aneuploid chromosomes. Our findings identify yeast's core essential gene set and reveal that the properties of dispensable essential genes are conserved from yeast to human cells, correlating with human genes that display cell line-specific essentiality in the Cancer Dependency Map (DepMap) project.


Subject(s)
Genes, Essential , Genes, Fungal , Saccharomyces cerevisiae/genetics , Suppression, Genetic , Aneuploidy , Evolution, Molecular , Gene Deletion , Gene Duplication , Gene Regulatory Networks , Genes, Suppressor , Multiprotein Complexes/metabolism
4.
Mol Syst Biol ; 16(2): e9243, 2020 02.
Article in English | MEDLINE | ID: mdl-32064787

ABSTRACT

Our ability to understand the genotype-to-phenotype relationship is hindered by the lack of detailed understanding of phenotypes at a single-cell level. To systematically assess cell-to-cell phenotypic variability, we combined automated yeast genetics, high-content screening and neural network-based image analysis of single cells, focussing on genes that influence the architecture of four subcellular compartments of the endocytic pathway as a model system. Our unbiased assessment of the morphology of these compartments-endocytic patch, actin patch, late endosome and vacuole-identified 17 distinct mutant phenotypes associated with ~1,600 genes (~30% of all yeast genes). Approximately half of these mutants exhibited multiple phenotypes, highlighting the extent of morphological pleiotropy. Quantitative analysis also revealed that incomplete penetrance was prevalent, with the majority of mutants exhibiting substantial variability in phenotype at the single-cell level. Our single-cell analysis enabled exploration of factors that contribute to incomplete penetrance and cellular heterogeneity, including replicative age, organelle inheritance and response to stress.


Subject(s)
Mutation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/growth & development , Single-Cell Analysis/methods , Genetic Pleiotropy , Genetic Variation , Microscopy, Fluorescence , Neural Networks, Computer , Penetrance , Phenotype , Saccharomyces cerevisiae/genetics , Systems Biology , Time-Lapse Imaging
5.
Science ; 360(6386)2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29674565

ABSTRACT

To systematically explore complex genetic interactions, we constructed ~200,000 yeast triple mutants and scored negative trigenic interactions. We selected double-mutant query genes across a broad spectrum of biological processes, spanning a range of quantitative features of the global digenic interaction network and tested for a genetic interaction with a third mutation. Trigenic interactions often occurred among functionally related genes, and essential genes were hubs on the trigenic network. Despite their functional enrichment, trigenic interactions tended to link genes in distant bioprocesses and displayed a weaker magnitude than digenic interactions. We estimate that the global trigenic interaction network is ~100 times as large as the global digenic network, highlighting the potential for complex genetic interactions to affect the biology of inheritance, including the genotype-to-phenotype relationship.


Subject(s)
Gene Regulatory Networks , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Mutation , Oligonucleotide Array Sequence Analysis
6.
Science ; 354(6312)2016 11 04.
Article in English | MEDLINE | ID: mdl-27811238

ABSTRACT

Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insights into the functional wiring diagram of the cell. In addition to suppressor mutations, we identified frequent secondary mutations,in a subset of genes, that likely cause a delay in the onset of stationary phase, which appears to promote their enrichment within a propagating population. These findings allow us to formulate and quantify general mechanisms of genetic suppression.


Subject(s)
Gene Regulatory Networks , Genes, Fungal , Genes, Suppressor , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Suppression, Genetic , Cell Physiological Phenomena/genetics , Chromosome Mapping
7.
Science ; 327(5964): 425-31, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20093466

ABSTRACT

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Subject(s)
Gene Regulatory Networks , Genome, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Computational Biology , Gene Duplication , Gene Expression Regulation, Fungal , Genes, Fungal , Genetic Fitness , Metabolic Networks and Pathways , Mutation , Protein Interaction Mapping , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...