Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(13): 3709-3712, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630935

ABSTRACT

Surface-enhanced Raman scattering (SERS) spectroscopy is a popular technique for detecting chemicals in small quantities. Rough metallic surfaces with nanofeatures are some of the most widespread and commercially successful substrates for efficient SERS measurements. A rough metallic surface creates a high-density random distribution of so-called "hot spots" with local optical field enhancement causing Raman signal to increase. In this Letter, we revisit the classic SERS experiment [Surf. Sci.158, 229 (1985)SUSCAS0039-602810.1016/0039-6028(85)90297-3] with rough metallic surfaces covered by a thin layer of copper phthalocyanine molecules. As a modification to the classic configuration, we apply an adaptive wavefront correction of a laser beam profile. As a result, we demonstrate an increase in brightness of local SERS hot spots and redistribution of Raman signal over the substrate area. We hypothesize that the improvement is due to optimal coupling of the shaped laser beam to the random plasmonic nanoantenna configurations. We show that the proposed adaptive-SERS modification is independent of the exact structure of the surface roughness and topography, works with many rough surfaces, and gives brighter Raman hot spots in comparison with conventional SERS measurements. We prove that the adaptive SERS is a powerful instrument for improving SERS sensitivity.

2.
Sci Rep ; 9(1): 1565, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30733515

ABSTRACT

We investigate the possibility of tailoring coherent Raman generated spectra via adaptive wavefront optimization. Our technique combines a spatial light modulator and a spectrometer providing a feedback loop. The algorithm is capable of controlling the Raman generation, producing broader spectra and an improved overall efficiency, and increasing the intensity of high-order sidebands. Moreover, by wavefront optimization we can extend the generated spectra towards the blue spectral region and increase the total power of generated sidebands. Mutual coherence and equal frequency separation of the multiple Raman sidebands are of interest for the synthesis of ultrashort light pulses with the total spectral bandwidth extending over ultraviolet, visible and near-infrared wavelengths.

3.
Opt Express ; 23(26): 34109-17, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26832066

ABSTRACT

We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.

SELECTION OF CITATIONS
SEARCH DETAIL
...