Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1354132, 2024.
Article in English | MEDLINE | ID: mdl-38495620

ABSTRACT

The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.

2.
Biophys J ; 120(22): 4980-4991, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34662558

ABSTRACT

Successful cryopreservation of complex specimens, such as tissues and organs, would greatly benefit both the medical and scientific research fields. Vitrification is one of the most promising techniques for complex specimen cryopreservation, but toxicity remains a major challenge because of the high concentration of cryoprotectants (CPAs) needed to vitrify. Our group has approached this problem using mathematical optimization to design less toxic CPA equilibration methods for cells. To extend this approach to tissues, an appropriate mass transfer model is required. Fick's law is commonly used, but this simple modeling framework does not account for the complexity of mass transfer in tissues, such as the effects of fixed charges, tissue size changes, and the interplay between cell membrane transport and transport through the extracellular fluid. Here, we propose a general model for mass transfer in tissues that accounts for all of these phenomena. To create this model, we augmented a previously published acellular model of mass transfer in articular cartilage to account for the effects of cells. We show that the model can accurately predict changes in CPA concentration and tissue size for both articular cartilage and pancreatic islets, tissue types with vastly different properties.


Subject(s)
Cartilage, Articular , Cryopreservation , Biological Transport , Cryoprotective Agents , Vitrification
3.
Bull Math Biol ; 82(6): 65, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32458057

ABSTRACT

Local cancer invasion of tissue is a complex, multiscale process which plays an essential role in tumour progression. During the complex interaction between cancer cell population and the extracellular matrix (ECM), of key importance is the role played by both bulk two-scale dynamics of ECM fibres within collective movement of the tumour cells and the multiscale leading edge dynamics driven by proteolytic activity of the matrix-degrading enzymes (MDEs) that are secreted by the cancer cells. As these two multiscale subsystems share and contribute to the same tumour macro-dynamics, in this work we develop further the model introduced in Shuttleworth and Trucu (Bull Math Biol 81:2176-2219, 2019. https://doi.org/10.1007/s11538-019-00598-w) by exploring a new aspect of their interaction that occurs at the cell scale. Specifically, here we will focus on understanding the cell-scale cross talk between the micro-scale parts of these two multiscale subsystems which get to interact directly in the peritumoural region, with immediate consequences both for MDE micro-dynamics occurring at the leading edge of the tumour and for the cell-scale rearrangement of the naturally oriented ECM fibres in the peritumoural region, ultimately influencing the way tumour progresses in the surrounding tissue. To that end, we will propose a new modelling that captures the ECM fibres degradation not only at macro-scale in the bulk of the tumour but also explicitly in the micro-scale neighbourhood of the tumour interface as a consequence of the interactions with molecular fluxes of MDEs that exercise their spatial dynamics at the invasive edge of the tumour.


Subject(s)
Extracellular Matrix/pathology , Models, Biological , Neoplasm Invasiveness/pathology , Neoplasms/pathology , Collagen Type I/metabolism , Computational Biology , Computer Simulation , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Humans , Mathematical Concepts , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism , Neoplasm Invasiveness/physiopathology , Neoplasms/metabolism , Peptide Hydrolases/metabolism , Proteolysis , Tumor Microenvironment/physiology
4.
J Theor Biol ; 486: 110040, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31604075

ABSTRACT

Local cancer cell invasion is a complex process involving many cellular and tissue interactions and is an important prerequisite for metastatic spread, the main cause of cancer related deaths. As a tumour increases in malignancy, the cancer cells adopt the ability to mutate into secondary cell subpopulations giving rise to a heterogeneous tumour. This new cell subpopulation often carries higher invasive abilities and permits a quicker spread of the tumour. Building upon the recent multiscale modelling framework for cancer invasion within a fibrous ECM introduced in Shuttleworth and Trucu, (2019), in this paper we consider the process of local invasion by a heterotypic tumour consisting of two cancer cell populations mixed with a two-phase ECM. To that end, we address the double feedback link between the tissue-scale cancer dynamics and the cell-scale molecular processes through the development of a two-part modelling framework that crucially incorporates the multiscale dynamic redistribution of oriented fibres occurring within a two-phase extra-cellular matrix and combines this with the multiscale leading edge dynamics exploring key matrix-degrading enzymes molecular processes along the tumour interface that drive the movement of the cancer boundary. The modelling framework will be accompanied by computational results that explore the effects of the underlying fibre network on the overall pattern of cancer invasion.


Subject(s)
Extracellular Matrix , Models, Biological , Humans , Neoplasm Invasiveness
5.
Bull Math Biol ; 81(7): 2176-2219, 2019 07.
Article in English | MEDLINE | ID: mdl-30980344

ABSTRACT

Recognised as one of the hallmarks of cancer, local cancer cell invasion is a complex multiscale process that combines the secretion of matrix-degrading enzymes with a series of altered key cell processes (such as abnormal cell proliferation and changes in cell-cell and cell-matrix adhesion leading to enhanced migration) to degrade important components of the surrounding extracellular matrix (ECM) and this way spread further in the human tissue. In order to gain a deeper understanding of the invasion process, we pay special attention to the interacting dynamics between the cancer cell population and various constituents of the surrounding tumour microenvironment. To that end, we consider the key role that ECM plays within the human body tissue, and in particular we focus on the special contribution of its fibrous proteins components, such as collagen and fibronectin, which play an important part in cell proliferation and migration. In this work, we consider the two-scale dynamic cross-talk between cancer cells and a two-component ECM (consisting of both a fibre and a non-fibre phase). To that end, we incorporate the interlinked two-scale dynamics of cell-ECM interactions within the tumour support that contributes simultaneously both to cell adhesion and to the dynamic rearrangement and restructuring of the ECM fibres. Furthermore, this is embedded within a multiscale moving boundary approach for the invading cancer cell population, in the presence of cell adhesion at the tissue scale and cell-scale fibre redistribution activity and leading edge matrix-degrading enzyme molecular proteolytic processes. The overall modelling framework will be accompanied by computational results that will explore the impact on cancer invasion patterns of different levels of cell adhesion in conjunction with the continuous ECM fibres rearrangement.


Subject(s)
Models, Biological , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/physiopathology , Cell Adhesion/physiology , Collagen/physiology , Computer Simulation , Extracellular Matrix/pathology , Extracellular Matrix/physiology , Fibronectins/physiology , Humans , Mathematical Concepts , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...