Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 468, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803273

ABSTRACT

BACKGROUND: Drought is a critical abiotic stress that influences maize yield and reduces grain yield when it occurs at the flowering or filling stage. To dissect the genetic architecture of grain yield under drought stress (DS), a genome-wide association analysis was conducted in a maize population composed of diverse inbred lines from five locations under well-watered and DS conditions at flowering in 2019 and 2020. RESULTS: Using a fixed and random model circulating probability unification model, a total of 147 loci associated with grain yield or the drought resistance index (DRI) were identified, of which 54 loci were associated with a DRI with an average phenotypic variation explanation of 4.03%. Further, 10 of these loci explained more than 10% of the phenotypic variation. By integrating two public transcriptome datasets, 22 differentially expressed genes were considered as candidate genes, including the cloned gene ZmNAC49, which responds to drought by regulating stomatal density. Enrichment and protein interaction network showed that signaling pathways responded to drought resistance, including jasmonic acid and salicylic acid, mitogen-activated protein kinase, and abscisic acid-activated. Additionally, several transcription factors involved in DS were identified, including basic leucine zipper (GRMZM2G370026), NAC (GRMZM2G347043), and ethylene-responsive element binding protein (GRMZM2G169654). CONCLUSIONS: In this study, we nominated several genes as candidate genes for drought resistance by intergrating association maping and transcription analysis. These results provide valuable information for understanding the genetic basis of drought tolerance at the mature stage and for designing drought-tolerant maize breeding.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/metabolism , Drought Resistance , Plant Breeding , Chromosome Mapping , Droughts , Stress, Physiological/genetics
2.
BMC Plant Biol ; 12: 201, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23122295

ABSTRACT

BACKGROUND: Tocopherols, which are vitamin E compounds, play an important role in maintaining human health. Compared with other staple foods, maize grains contain high level of tocopherols. RESULTS: Two F(2) populations (K22/CI7 and K22/Dan340, referred to as POP-1 and POP-2, respectively), which share a common parent (K22), were developed and genotyped using a GoldenGate assay containing 1,536 single nucleotide polymorphism (SNP) markers. An integrated genetic linkage map was constructed using 619 SNP markers, spanning a total of 1649.03 cM of the maize genome with an average interval of 2.67 cM. Seventeen quantitative trait loci (QTLs) for all the traits were detected in the first map and 13 in the second. In these two maps, QTLs for different traits were localized to the same genomic regions and some were co-located with candidate genes in the tocopherol biosynthesis pathway. Single QTL was responsible for 3.03% to 52.75% of the phenotypic variation and the QTLs in sum explained 23.4% to 66.52% of the total phenotypic variation. A major QTL (qc5-1/qd5-1) affecting α-tocopherol (αT) was identified on chromosome 5 between the PZA03161.1 and PZA02068.1 in the POP-2. The QTL region was narrowed down from 18.7 Mb to 5.4 Mb by estimating the recombination using high-density markers of the QTL region. This allowed the identification of the candidate gene VTE4 which encodes γ-tocopherol methyltransferase, an enzyme that transforms γ-tocopherol (γT)to αT. CONCLUSIONS: These results demonstrate that a few QTLs with major effects and several QTLs with medium to minor effects might contribute to the natural variation of tocopherols in maize grain. The high-density markers will help to fine map and identify the QTLs with major effects even in the preliminary segregating populations. Furthermore, this study provides a simple guide line for the breeders to improve traits that minimize the risk of malnutrition, especially in developing countries.


Subject(s)
Chromosome Segregation/genetics , Polymorphism, Single Nucleotide/genetics , Tocopherols/metabolism , Zea mays/genetics , Zea mays/metabolism , Biosynthetic Pathways/genetics , Chromosomes, Plant/genetics , Genetic Association Studies , Genetic Linkage , Genetic Markers , Haplotypes/genetics , Humans , Inheritance Patterns/genetics , Phenotype , Physical Chromosome Mapping , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...