Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioengineering (Basel) ; 10(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36829661

ABSTRACT

The continuous monitoring of respiratory rate (RR) and oxygen saturation (SpO2) is crucial for patients with cardiac, pulmonary, and surgical conditions. RR and SpO2 are used to assess the effectiveness of lung medications and ventilator support. In recent studies, the use of a photoplethysmogram (PPG) has been recommended for evaluating RR and SpO2. This research presents a novel method of estimating RR and SpO2 using machine learning models that incorporate PPG signal features. A number of established methods are used to extract meaningful features from PPG. A feature selection approach was used to reduce the computational complexity and the possibility of overfitting. There were 19 models trained for both RR and SpO2 separately, from which the most appropriate regression model was selected. The Gaussian process regression model outperformed all the other models for both RR and SpO2 estimation. The mean absolute error (MAE) for RR was 0.89, while the root-mean-squared error (RMSE) was 1.41. For SpO2, the model had an RMSE of 0.98 and an MAE of 0.57. The proposed system is a state-of-the-art approach for estimating RR and SpO2 reliably from PPG. If RR and SpO2 can be consistently and effectively derived from the PPG signal, patients can monitor their RR and SpO2 at a cheaper cost and with less hassle.

2.
Polymers (Basel) ; 14(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36297885

ABSTRACT

Total hip replacement (THR) is a common orthopedic surgery technique that helps thousands of individuals to live normal lives each year. A hip replacement replaces the shattered cartilage and bone with an implant. Most hip implants fail after 10-15 years. The material selection for the total hip implant systems is a major research field since it affects the mechanical and clinical performance of it. Stress shielding due to excessive contact stress, implant dislocation due to a large deformation, aseptic implant loosening due to the particle propagation of wear debris, decreased bone remodeling density due to the stress shielding, and adverse tissue responses due to material wear debris all contribute to the failure of hip implants. Recent research shows that pre-clinical computational finite element analysis (FEA) can be used to estimate four mechanical performance parameters of hip implants which are connected with distinct biomaterials: von Mises stress and deformation, micromotion, wear estimates, and implant fatigue. In vitro, in vivo, and clinical stages are utilized to determine the hip implant biocompatibility and the unfavorable local tissue reactions to different biomaterials during the implementation phase. This research summarizes and analyses the performance of the different biomaterials that are employed in total hip implant systems in the pre-clinical stage using FEA, as well as their performances in in vitro, in vivo, and in clinical studies, which will help researchers in gaining a better understanding of the prospects and challenges in this field.

3.
Bioengineering (Basel) ; 9(10)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36290527

ABSTRACT

Respiratory ailments are a very serious health issue and can be life-threatening, especially for patients with COVID. Respiration rate (RR) is a very important vital health indicator for patients. Any abnormality in this metric indicates a deterioration in health. Hence, continuous monitoring of RR can act as an early indicator. Despite that, RR monitoring equipment is generally provided only to intensive care unit (ICU) patients. Recent studies have established the feasibility of using photoplethysmogram (PPG) signals to estimate RR. This paper proposes a deep-learning-based end-to-end solution for estimating RR directly from the PPG signal. The system was evaluated on two popular public datasets: VORTAL and BIDMC. A lightweight model, ConvMixer, outperformed all of the other deep neural networks. The model provided a root mean squared error (RMSE), mean absolute error (MAE), and correlation coefficient (R) of 1.75 breaths per minute (bpm), 1.27 bpm, and 0.92, respectively, for VORTAL, while these metrics were 1.20 bpm, 0.77 bpm, and 0.92, respectively, for BIDMC. The authors also showed how fine-tuning a small subset could increase the performance of the model in the case of an out-of-distribution dataset. In the fine-tuning experiments, the models produced an average R of 0.81. Hence, this lightweight model can be deployed to mobile devices for real-time monitoring of patients.

4.
Sensors (Basel) ; 20(11)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492902

ABSTRACT

Hypertension is a potentially unsafe health ailment, which can be indicated directly from the blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous, and noninvasive BP measurement system is proposed using the photoplethysmograph (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo preprocessing and feature extraction steps. Time, frequency, and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for systolic BP (SBP) and diastolic BP (DBP) estimation individually. Gaussian process regression (GPR) along with the ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root mean square error (RMSE) of 6.74 and 3.59, respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes.


Subject(s)
Blood Pressure Determination , Blood Pressure , Machine Learning , Photoplethysmography , Adult , Aged , Algorithms , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...