Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(21)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114397

ABSTRACT

In this study, crystals of the hybrid layered structure, combined with Fe(III) Spin-Crossover (SCO) complexes with metal-dithiolate anionic radicals, and the precursors with nitrate and iodine counterions, are obtained and characterized. [Fe(III)(3-OMe-Sal2trien)][Ni(dmit)2] (1), [Fe(III)(3-OMe-Sal2trien)]NO3·H2O (2), [Fe(III)(3-OMe-Sal2trien)]I (3) (3-OMe-Sal2trien = hexadentate N4O2 Schiff base is the product of the condensation of triethylenetetramine with 3-methoxysalicylaldehyde; H2dmit = 2-thioxo-1,3-dithiole-4,5-dithiol). Bulk SCO transition was not achieved in the range 2.0-350 K for all three compounds. Alternatively, the hybrid system (1) exhibited irreversible segregation into the spatial fractions of Low-Spin (LS) and High-Spin (HS) phases of the ferric moiety, induced by thermal cycling. Fractioning was studied using both SQUID and EPR methods. Magnetic properties of the LS and HS phases were analyzed in the framework of cooperative interactions with anionic sublattice: Anion radical layers Ni(dmit)2 (1), and H-bonded chains with NO3 and I (2,3). LS phase of (1) exhibited unusual quasi-two-dimensional conductivity related to the Arrhenius mechanism in the anion radical layers, ρ||c = 2 × 105 Ohm·cm and ρ⟂c = 7 × 102 Ohm·cm at 293 K. Ground spin state of the insulating HS phase was distinctive by ferromagnetically coupled spin pairs of HS Fe3+, S = 5/2, and metal-dithiolate radicals, S = 1/2.


Subject(s)
Coordination Complexes/chemistry , Iron/chemistry , Nickel/chemistry , Anions/chemistry , Crystallization , Electric Conductivity , Free Radicals/chemistry , Hydrogen Bonding , Magnetics , Models, Molecular , Molecular Structure , Schiff Bases/chemistry , Toluene/analogs & derivatives , Toluene/chemistry
2.
Inorg Chem ; 55(17): 9121-30, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27541570

ABSTRACT

The radical anion salt [Fe{HC(pz)3}2](TCNQ)3 demonstrates conductivity and spin-crossover (SCO) transition associated with Fe(II) complex cation subsystem. It was synthesized and structurally characterized at temperatures 100, 300, 400, and 450 K. The compound demonstrates unusual for 7,7,8,8,-tetracyanoquinodimethane (TCNQ)-based salts quasi-two-dimensional conductivity. Pronounced changes of the in-plane direct-current resistivity and intensity of the electron paramagnetic resonance (EPR) signal, originated from TCNQ subsystem, precede the SCO transition at the midpoint T* = 445 K. The boltzmannian growth of the total magnetic response and structural changes in the vicinity of T* uniquely show that half [Fe{HC(pz)3}2] cations exist in high-spin state. Robust broadening of the EPR signal triggered by the SCO transition is interpreted in terms of cross relaxation between the TCNQ and Fe(II) spin subsystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...