Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Small ; 20(26): e2311047, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38269475

ABSTRACT

Anion exchange membrane water electrolysis (AEMWE) is an attractive method for green hydrogen production. It allows the use of non-platinum group metal catalysts and can achieve performance comparable to proton exchange membrane water electrolyzers due to recent technological advances. While current systems already show high performances with available materials, research gaps remain in understanding electrode durability and degradation behavior. In this study, the performance and degradation tracking of a Ni3Fe-LDH-based single-cell is implemented and investigated through the correlation of electrochemical data using chemical and physical characterization methods. A performance stability of 1000 h, with a degradation rate of 84 µV h-1 at 1 A cm-2 is achieved, presenting the Ni3Fe-LDH-based cell as a stable and cost-attractive AEMWE system. The results show that the conductivity of the formed Ni-Fe-phase is one key to obtaining high electrolyzer performance and that, despite Fe leaching, change in anion-conducting binder compound, and morphological changes inside the catalyst bulk, the Ni3Fe-LDH-based single-cells demonstrate high performance and durability. The work reveals the importance of longer stability tests and presents a holistic approach of electrochemical tracking and post-mortem analysis that offers a guideline for investigating electrode degradation behavior over extended measurement periods.

2.
Small ; 20(21): e2308594, 2024 May.
Article in English | MEDLINE | ID: mdl-38152974

ABSTRACT

The development of catalysts for an economical and efficient oxygen evolution reaction (OER) is critical for clean and sustainable energy storage and conversion. Nickel-iron-based (NiFe) nanostructures are widely investigated as active OER catalysts and especially shape-controlled nanocrystals exhibit optimized surface structure and electronic properties. However, the structural control from amorphous to well-defined crystals is usually time-consuming and requires multiple stages. Here, a universal two-step precipitation-hydrothermal approach is reported to prepare a series of NiFe-based nanocrystals (e.g., hydroxides, sulfides, and molybdates) from amorphous precipitates. Their morphology and evolution of atomic and electronic structure during this process are studied using conclusive microscopy and spectroscopy techniques. The short-term, additive-free, and low-cost method allows for the control of the crystallinity of the materials and facilitates the generation of nanosheets, nanorods, or nano-octahedra with excellent water oxidation activity. The NiFe-based crystalline catalysts exhibit slightly compromised initial activity but more robust long-term stability than their amorphous counterparts during electrochemical operation. This facile, reliable, and universal synthesis method is promising in strategies for fabricating NiFe-based nanostructures as efficient and economically valuable OER electrocatalysts.

3.
Membranes (Basel) ; 13(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37233583

ABSTRACT

The polymer electrolyte membrane and its contact with electrodes has a significant effect on the performance of fuel and electrolysis cells but the choice of commercially available membranes is limited. In this study, membranes for direct methanol fuel cells (DMFCs) were made by ultrasonic spray deposition from commercial Nafion solution; the effect of the drying temperature and presence of high boiling solvents on the membrane properties was then analyzed. When choosing suitable conditions, membranes with similar conductivity, water uptake, and higher crystallinity than comparable commercial membranes can be obtained. These show similar or superior performance in DMFC operation compared to commercial Nafion 115. Furthermore, they exhibit low permeability for hydrogen, which makes them attractive for electrolysis or hydrogen fuel cells. The findings from our work will allow for the adjustment of membrane properties to the specific requirements of fuel cells or water electrolysis, as well as the inclusion of additional functional components for composite membranes.

4.
ACS Appl Mater Interfaces ; 14(17): 19397-19408, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35452215

ABSTRACT

Nickel (poly)sulfides have been widely studied as anodic catalysts for alkaline water electrolysis owing to their diverse morphologies, high catalytic activities in the oxygen evolution reaction (OER), and low cost. To utilize low-cost and high-efficiency polysulfides with industry-relevant cycling stability, we develop a Ni-rich NiSx/Ni(OH)2/NiOOH catalyst derived from NiS2/Ni3S4 nanocubes. Ni-rich NiSx/Ni(OH)2/NiOOH shows improved OER catalytic activity (η = 374 mV@50 mA cm-2) and stability (0.1% voltage increase) after 65 h of a galvanostatic test at 10 mA cm-2 compared with commercial Ni/NiO and hydrothermally synthesized Ni(OH)2 (both show η > 460 mV@50 mA cm-2 along with 4.40 and 1.92% voltage increase, respectively). A water-splitting electrolyzer based on Pt/C||AF1-HNN8-50||NiSx/Ni(OH)2/NiOOH exhibits a current density of 1800 mA cm-2 at 2.0 V and 500 h high-rate stability at 1000 mA cm-2 with negligible attenuation of only 0.12 mV h-1. This work provides an understanding of truly stable species, intrinsic active phases of Ni polysulfides, their high-rate stability in a real cell, and sheds light on the development of stable chalcogenide-based anodic electrocatalysts for anion exchange membrane water electrolysis (AEMWE).

5.
Phys Chem Chem Phys ; 24(11): 6699-6715, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35234757

ABSTRACT

In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-α-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including ß-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-α-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-ß-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.


Subject(s)
Amyloid , Neurodegenerative Diseases , Peptides, Cyclic , Amyloid/biosynthesis , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Humans , Neurodegenerative Diseases/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Protein Conformation, beta-Strand
6.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164281

ABSTRACT

In this study, we present the facile formation of platinum nanoparticles (Pt-NPs) on reduced graphite oxide (rGO) (Pt-NP@rGO) by microwave-induced heating of the organometallic precursor ((MeCp)PtMe3 in different tunable aryl alkyl ionic liquids (TAAIL). In the absence of rGO, transmission electron microscopy (TEM) reveals the formation of dense aggregates of Pt-NPs, with primary particle sizes of 2 to 6 nm. In contrast, in the Pt-NP@rGO samples, Pt-NPs are homogeneously distributed on the rGO, without any aggregation. Pt-NP@rGO samples are used as electrode materials for oxygen reduction reaction (ORR), which was assessed by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The electrochemical surface area (ECSA) and mass-specific activity (MA) increase up to twofold, compared with standard Pt/C 60%, making Pt-NP@rGO a competitive material for ORR.

7.
Molecules ; 27(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35209029

ABSTRACT

The exploration of earth-abundant electrocatalysts with high performance for the oxygen evolution reaction (OER) is eminently desirable and remains a significant challenge. The composite of the metal-organic framework (MOF) Ni10Co-BTC (BTC = 1,3,5-benzenetricarboxylate) and the highly conductive carbon material ketjenblack (KB) could be easily obtained from the MOF synthesis in the presence of KB in a one-step solvothermal reaction. The composite and the pristine MOF perform better than commercially available Ni/NiO nanoparticles under the same conditions for the OER. Activation of the nickel-cobalt clusters from the MOF can be seen under the applied anodic potential, which steadily boosts the OER performance. Ni10Co-BTC and Ni10Co-BTC/KB are used as sacrificial agents and undergo structural changes during electrochemical measurements, the stabilized materials show good OER performances.

8.
ACS Appl Mater Interfaces ; 13(14): 16182-16196, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33798332

ABSTRACT

The cell performance and durability of polymer electrolyte membrane (PEM) water electrolyzers are limited by the surface passivation of titanium-based porous transport layers (PTLs). In order to ensure stable performance profiles over time, large amounts (≥1 mg·cm-2) of noble metals (Au, Pt, Ir) are most widely used to coat titanium-based PTLs. However, their high cost is still a major obstacle toward commercialization and widespread application. In this paper, we assess different loadings of iridium, ranging from 0.005 to 0.05 mg·cm-2 in titanium PTLs, that consequently affect the investment costs of PEM water electrolyzers. Concerning a reduction in the precious metal costs, we found that Ir as a protective layer with a loading of 0.025 mg·cm-2 on the PTLs would be sufficient to achieve the same cell performance as PTLs with a higher Ir loading. This Ir loading is a 40-fold reduction over the Au or Pt loading typically used for protective layers in current commercial PEM water electrolyzers. We show that the Ir protective layer here not only decreases the Ohmic resistance significantly, which is the largest part of the gain in performance, but moreover, the oxygen evolution reaction activity of the iridium layer makes it promising as a cost-effective catalyst layer. Our work also confirms that the proper construction of a multifunctional interface between a membrane and a PTL indeed plays a crucial role in guaranteeing the superior performance and efficiency of electrochemical devices.

9.
ACS Appl Mater Interfaces ; 13(11): 13576-13585, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33706507

ABSTRACT

Low-cost, highly active, and highly stable catalysts are desired for the generation of hydrogen and oxygen using water electrolyzers. To enhance the kinetics of the oxygen evolution reaction in an acidic medium, it is of paramount importance to redesign iridium electrocatalysts into novel structures with organized morphology and high surface area. Here, we report on the designing of a well-defined and highly active hollow nanoframe based on iridium. The synthesis strategy was to control the shape of nickel nanostructures on which iridium nanoparticles will grow. After the growth of iridium on the surface, the next step was to etch the nickel core to form the NiIr hollow nanoframe. The etching procedure was found to be significant in controlling the hydroxide species on the iridium surface and by that affecting the performance. The catalytic performance of the NiIr hollow nanoframe was studied for oxygen evolution reaction and shows 29 times increased iridium mass activity compared to commercially available iridium-based catalysts. Our study provides novel insights to control the fabrication of iridium-shaped catalysts using 3d transition metal as a template and via a facile etching step to steer the formation of hydroxide species on the surface. These findings shall aid the community to finally create stable iridium alloys for polymer electrolyte membrane water electrolyzers, and the strategy is also useful for many other electrochemical devices such as batteries, fuel cells, sensors, and solar organic cells.

10.
Materials (Basel) ; 13(6)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213913

ABSTRACT

Electrochemical energy conversion and storage is key for the use of regenerative energies at large scale. A thorough understanding of the individual components, such as the ion conducting membrane and the electrode layers, can be obtained with scattering techniques on atomic to molecular length scales. The largely heterogeneous electrode layers of High-Temperature Polymer Electrolyte Fuel Cells are studied in this work with small- and wide-angle neutron scattering at the same time with the iMATERIA diffractometer at the spallation neutron source at J-PARC, opening a view on structural properties on atomic to mesoscopic length scales. Recent results on the proton mobility from the same samples measured with backscattering spectroscopy are put into relation with the structural findings.

11.
Chemistry ; 25(47): 11048-11057, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31140211

ABSTRACT

Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1-2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.

12.
Nanoscale ; 10(45): 21353-21362, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30426121

ABSTRACT

Octahedral Pt-Ni catalyst nanoparticles (NPs) are predicted to exhibit high activity for the oxygen reduction reaction. However, until now this class of catalysts has been limited by its long-term performance, as a result of compositional and morphological instabilities of the NPs. In situ transmission electron microscopy (TEM) is a powerful technique for understanding morphological and compositional evolution under controlled conditions. It is of great importance to study the evolution of the morphology and elemental distribution in bimetallic NPs and their interaction with the support in reducing and oxidizing treatments at the atomic scale for the rational design of catalysts. Here, we use in situ TEM to follow dynamic changes in the NP morphology, faceting and elemental segregation under working conditions in previously unreported Pt-Ni core-shell octahedral structures. We follow changes in the Pt-Ni catalyst from a segregated structure to an alloyed shell configuration and then a more spherical structure as a function of temperature under reducing conditions. Exposure to an oxidizing environment then leads to oxidation of the C support, while the spherical NPs undergo a cycle of transformations into cubic NPs followed by the reaction to spherical NPs. The formation of the cubic NPs results from CO formation during C oxidation, before it is finally oxidized to CO2. Our observations may pave the way towards the design of optimized structure-stability electrocatalysts and highlight the importance of TEM visualization of degradation and transformation pathways in bimetallic Pt-Ni NPs under reducing and oxidizing conditions.

13.
ACS Nano ; 12(6): 5306-5311, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29799722

ABSTRACT

Octahedral faceted nanoparticles are highly attractive fuel cell catalysts as a result of their activity for the oxygen reduction reaction (ORR). However, their surface compositional and morphological stability currently limits their long-term performance in real membrane electrode assemblies. Here, we perform in situ heating of compositionally segregated PtNi1.5 octahedral nanoparticles inside a transmission electron microscope, in order to study their compositional and morphological changes. The starting PtNi1.5 octahedra have Pt-rich edges and concave Ni-rich {111} facets. We reveal a morphological evolution sequence, which involves transformation from concave octahedra to particles with atomically flat {100} and {111} facets, ideally representing truncated octahedra or cuboctahedra. The flat {100} and {111} facets are thought to comprise a thin Pt layer with a Ni-rich subsurface, which may boost catalytic activity. However, the transformation to truncated octahedra/cuboctahedra also decreases the area of the highly active {111} facets. The morphological and surface compositional evolution, therefore, results in a compromise between catalytic activity and morphological stability. Our findings are important for the design of more stable faceted PtNi nanoparticles with high activities for the ORR.

14.
J Am Chem Soc ; 139(46): 16536-16547, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29019692

ABSTRACT

Shape-controlled octahedral Pt-Ni alloy nanoparticles exhibit remarkably high activities for the electroreduction of molecular oxygen (oxygen reduction reaction, ORR), which makes them fuel-cell cathode catalysts with exceptional potential. To unfold their full and optimized catalytic activity and stability, however, the nano-octahedra require post-synthesis thermal treatments, which alter the surface atomic structure and composition of the crystal facets. Here, we address and strive to elucidate the underlying surface chemical processes using a combination of ex situ analytical techniques with in situ transmission electron microscopy (TEM), in situ X-ray diffraction (XRD), and in situ electrochemical Fourier transformed infrared (FTIR) experiments. We present a robust fundamental correlation between annealing temperature and catalytic activity, where a ∼25 times higher ORR activity than for commercial Pt/C (2.7 A mgPt-1 at 0.9 VRHE) was reproducibly observed upon annealing at 300 °C. The electrochemical stability, however, peaked out at the most severe heat treatments at 500 °C. Aberration-corrected scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy (EDX) in combination with in situ electrochemical CO stripping/FTIR data revealed subtle, but important, differences in the formation and chemical nature of Pt-rich and Ni-rich surface domains in the octahedral (111) facets. Estimating trends in surface chemisorption energies from in situ electrochemical CO/FTIR investigations suggested that balanced annealing generates an optimal degree of Pt surface enrichment, while the others exhibited mostly Ni-rich facets. The insights from our study are quite generally valid and aid in developing suitable post-synthesis thermal treatments for other alloy nanocatalysts as well.

15.
Nanoscale ; 7(32): 13521-9, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26202729

ABSTRACT

Hollow particles of Pt-Ni-Au alloys have been prepared through a two-step reaction with the synthesis of NiPt octahedral and cuboctahedral templates followed by a galvanic replacement reaction by Au(iii). Metal etching presents an efficient method to yield hollow particles and investigate the Au diffusion in the metallic Pt-Ni framework through macroscopic (X-ray diffraction and SQUID magnetic measurement) and microscopic (HRTEM and STEM) measurements. The hollow particles retain the shape of the original nanocrystals. The nucleation of Au is found to be induced preferentially on the tip of the polyhedral nanocrystals while the etching of Ni starts from the facets leaving hollow octahedral particles consisting of 2 nm thick edges. In the presence of oleylamine, the Au tip grows and yields a heterogeneous dimer hollow-NiPt/Au. Without oleylamine, the Au nucleation is followed by Au diffusion in the Ni/Pt framework to yield a hollow single crystal Pt-Ni-Au alloy. The Pt-Ni-Au alloyed particles display a superparamagnetic behavior at room temperature.

16.
Nanoscale ; 4(3): 762-7, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22109737

ABSTRACT

In this manuscript, we report on the elaboration of nickel thin films, isolated clusters and nanowires on silicon, glass and polymers by a low temperature deposition technique. The process is based on the thermal decomposition of Ni (η(4)-C(8)H(12))(2) at temperatures as low as 80 °C, which exclusively yields metallic Ni and a volatile by-product. The low temperature of the process makes it compatible with most of the substrates, even polymers and organic layers. Several deposition techniques are explored, among them spin coating of the organometallic complex in solution, which allows controlling nickel film thickness down to several nanometers. The density of the film can be varied by the speed of the spin coater with the formation of nanowires being observed for an optimized speed. The nanowires form a network of parallel lines on silicon and the phenomenon will be discussed as a selective dewetting of the organometallic precursor. All samples are fully characterized by SEM, EDS, cross-sectional HRTEM, ellipsometry, AFM, MFM and SQUID magnetic measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...