Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(1): 373-385, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34898214

ABSTRACT

Using DFT and ab initio calculations, we demonstrate that noncyclic formamidines can undergo thermal rearrangement into their isomeric aminocarbenes under rather mild conditions. We synthesized the silylformamidine, for which the lowest activation energy in this process was predicted. Experimental studies proved it to serve as a very reactive nucleophilic carbene. The reactions with acetylenes, benzenes, and trifluoromethane proceeded via insertion into sp, sp2, and sp3 CH bonds. The carbene also reacted with the functional groups, such as CHO, COR, and CN at double or triple bonds, displaying high mobility of the trimethylsilyl group. The obtained silylformamidine can be considered as a latent nucleophilic carbene. It can be prepared in bulk quantities, stored, and used when the need arises. Calculation results predict similar behavior for some other silylated formamidines and related compounds.

2.
Chem Sci ; 12(34): 11294-11305, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34667540

ABSTRACT

A general approach to a new generation of spirocyclic molecules - oxa-spirocycles - was developed. The key synthetic step was iodocyclization. More than 150 oxa-spirocyclic compounds were prepared. Incorporation of an oxygen atom into the spirocyclic unit dramatically improved water solubility (by up to 40 times) and lowered lipophilicity. More potent oxa-spirocyclic analogues of antihypertensive drug terazosin were synthesized and studied in vivo.

3.
Molecules ; 25(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370100

ABSTRACT

Cancer still remains a major public health concern around the world and the search for new potential antitumor molecules is essential for fighting the disease. This study evaluated the anticancer and immunomodulatory potential of the newly synthetized ellipticine derivate: sodium bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-7-sulfonate (Br-Ell-SO3Na). It was prepared by the chlorosulfonation of 9-bromoellipticine. The ellipticine-7-sulfonic acid itself is not soluble, but its saponification with sodium hydroxide afforded a water-soluble sodium salt. The cytotoxicity of Br-Ell-SO3Na was tested against cancerous (K562 cell line) and non-cancerous cells (Vero cell line and human peripheral blood mononuclear cells (PBMC)) using a Methylthiazoletetrazolium (MTT) assay. Cell cycle arrest was assessed by flow cytometry and the immunomodulatory activity was analyzed through an enzyme-linked immunosorbent assay (ELISA). The results showed that the Br-Ell-SO3Na molecule has specific anticancer activity (IC50 = 35 µM) against the K562 cell line, once no cytotoxicity effect was verified against non-cancerous cells. Cell cycle analysis demonstrated that K562 cells treated with Br-Ell-SO3Na were arrested in the phase S. Moreover, the production of IL-6 increased and the expression of IL-8 was inhibited in the human PBMC treated with Br-Ell-SO3Na. The results demonstrated that Br-Ell-SO3Na is a promising anticancer molecule attested by its noteworthy activity against the K562 tumor cell line and immunomodulatory activity in human PBMC cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ellipticines/chemistry , Ellipticines/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Cycle/drug effects , Cell Line, Tumor , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Ellipticines/chemical synthesis , Humans , Immunologic Factors/chemical synthesis , Immunomodulation/drug effects , Molecular Structure , Solubility , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...