Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(17): 8050-8056, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37646499

ABSTRACT

Designing heterostructures of soft ionic nanocrystals with metallic or covalent nanostructures having epitaxial junctions in solution poses several fundamental challenges. Hence, in spite of large successes in developing lead halide perovskite nanocrystals, the chemistry of formation of their facet-directive epitaxial growth of noble metals cannot be explored yet. To address this, herein, epitaxial heterostructures of orthorhombic CsPbBr3 and cubic Pt in multiple directional approaches are reported. Appropriate facets of perovskite nanocrystals and high-temperature reaction are the key parameters for obtaining such nanocrystal heterostructures. Interfacial planes at the junctions having ideal lattice matching helped in establishing the epitaxial relations of (110) of orthorhombic (space group Pbnm) CsPbBr3 with {020} of cubic Pt and again (011) of CsPbBr3 with {111} of Pt. These results provided strong fundamental insights that ionic halide perovskite nanostructures and materials having different crystal phases can be placed in a single building block with continuous sublattice structures.

2.
J Am Chem Soc ; 144(40): 18629-18641, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36174102

ABSTRACT

Lead halide perovskite nanocrystal heterostructures have been extensively studied in the recent past for improving their photogenerated charge carriers mobility. However, most of such heterostructures are formed with random connections without having strong evidence of epitaxial relation. Perovskite-chalcohalides are the first in this category, where all-inorganic heterostructures are formed with epitaxial growth. Going beyond one facet, herein, different polyhedral nanocrystals of CsPbBr3 are explored for facet-selective secondary epitaxial sulfobromide growths. Following a decoupled synthesis process, the heterojunctions are selectively established along {110} as well as {200} facets of 26-faceted rhombicuboctahedrons, the {110} facets of armed hexapods, and the {002} facets of 12-faceted dodecahedron nanocrystals of orthorhombic CsPbBr3. Lattice matching induced these epitaxial growths, and their heterojunctions have been extensively studied with electron microscopic imaging. Unfortunately, these heterostructures did not retain the intense host emission because of their indirect band structures, but such combinations are found to be ideal for promoting photocatalytic CO2 reduction. The pseudo-Type-II combination helped here in the successful movement of charge carriers and also improved the rate of catalysis. These results suggest that facet-selective all-inorganic perovskite heterostructures can be epitaxially grown and this could help in improving their catalytic activities.

3.
ACS Appl Mater Interfaces ; 14(33): 37699-37708, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35960025

ABSTRACT

Designing an efficient catalyst for a sustainable photoelectrochemical water oxidation reaction is very challenging in the context of renewable energy research. Here, we have introduced a new semiconducting porous zinc-thiolate framework via successful stitching of an "N" donor linker with a triazine-based tristhiolate secondary building unit in the overall architecture. The introduction of both linker and tristhiolate ligand synergistically modifies the architecture by making it a rigid, crystalline, three-dimensional, thermally stable, and porous framework. Our novel zinc-thiolate framework is used as an n-type semiconductor as revealed from the solid-state UV-vis DRS spectroscopic analysis, ac and dc conductivity analysis, and Mott-Schottky plot. This n-type semiconductor-based zinc-thiolate framework is utilized in the photoelectrochemical water oxidation reaction. It displayed a very high efficiency for a visible-light-driven oxygen evolution reaction (OER) in a KOH medium using standard Ag/AgCl as the reference electrode. The superiority of this material was further revealed from the low onset potential (0.822 mV vs RHE), high photocurrent density (0.204 mA cm-2), good stability, and high O2 evolution rate (77 µmol g-1 of oxygen evolution within 2 h), and a good efficiency (ABPE 0.42%, IPCE 29.6% and APCE 34.5%). Furthermore, the porosity in the overall framework seems to be a blessing to the photoelectrochemical performance due to better mass diffusion of the electrolyte. A detailed mechanism for the OER reaction was analyzed through density functional theory analysis suggesting the potential future of this Zn-thiolate framework for achieving a high efficiency in the sustainable water oxidation reaction.

4.
J Phys Chem Lett ; 13(17): 3804-3811, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35452244

ABSTRACT

Controlling the compositions of Se(VI) and Te(VI) ions in a 2D disk on 1D structures of Sb(V) chalcogenides, disk-on-rod heterostructures having three different epitaxial angles with different surface facets are reported. Te injection temperature determined the composition, ensuring heterostructure formation with trigonal Sb2SexTe3-x disks on orthorhombic Sb2Se3 rods having orientation angles 180°, 135°, and 90°. The growth kinetics of disks connected at one/two heads of parent rods is manipulated using an Se precursor as a limiting reagent. Theoretical calculations established the energy minimization of different orientations, their possible formation, and suitability in energy transfer applications. Electrochemical measurements were also in agreement with theoretical calculations. Hence, this is a case study of advanced modular synthesis of disk-on-rod nanostructures, leading a step further in nanocrystal engineering for more desirable complex structures and their charge transfer property.

5.
Nanoscale ; 14(11): 4281-4291, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35244646

ABSTRACT

The increasingly popular, lead-free perovskite, Cs3Bi2I9 has a vulnerable Bi3+ state under reductive potentials, due to the high standard reduction potential of Bi3+/Biδ+ (0 < δ < 3). Contrary to this fundamental understanding, herein, ligand-coated Cs3Bi2I9 nanodiscs (NDs) demonstrate outstanding electrochemical stability with up to -1 V versus a saturated calomel electrode in aqueous 0.63 M (5% v/v) and 6.34 M (50% v/v) hydroiodic acid (HI), with a minor BiI3 fraction due to the unavoidable partial aqueous disintegration of the perovskite phase after 8 and 16 h, respectively. A dynamic equilibrium of saturated 0.005 M NDs maintains the common ion effect of I-, and remarkably stabilizes ∼93% Bi3+ in 0.63 M HI under a strong reductive potential. In comparison, the hexagonal phase of bulk Cs3Bi2I9 disintegrates considerably in the semi-aqueous media. Lowering the concentration of synthetic HI from the commonly used ∼50% v/v by elevating the pH from -0.8 to 0.2 helps in reducing the cost per unit of H2 production. Our Cs3Bi2I9 NDs with a hexagonal lattice have 4-6 (002) planes stacked along the c-axis. With 0.005 M photostable NDs, 22.5 µmol h-1 H2 is photochemically obtained within 8 h in a 6.34 M HI solution. Electrocatalytic H2 evolution occurs with a turnover frequency of 11.7 H2 per s at -533 mV and outstanding operational stability for more than 20 h.

6.
Nano Lett ; 22(4): 1633-1640, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35157475

ABSTRACT

The conversion of metal halides to lead halide perovskites with B-site metal ion diffusion has remained a convenient approach for obtaining shape-modulated perovskite nanocrystals. These transformations are typically observed for materials having a common A-site Cs-sublattice platform. However, due to the fast reactions, trapping the interconversion process has been difficult. In an exploration of the tetragonal phase of Cs7Cd3Br13 platelets as the parent material, herein, a slower diffusion of Pb(II) leading to facet-modulated CsPbBr3 platelets is reported. This was expected due to the presence of Cd(II) halide octahedra along with Cd(II) halide tetrahedra in the parent material. This helped in microscopically monitoring their phase transformation via an epitaxially related core/shell intermediate heterostructure. The transformation was also derived and predicted by density functional theory calculations. Further, when the reaction chemistry was tuned, core/shell platelets were transformed to different facet-modulated and hollow CsPbBr3 platelet nanostructures. These platelets having different facets were also explored for catalytic CO2 reduction, and their catalytic rates were compared.

7.
J Phys Chem Lett ; 12(47): 11585-11590, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34808046

ABSTRACT

Semiconductor nanocrystals coupled with plasmonic Au nanoparticles have been widely studied as photoelectrocatalysts for solar water splitting. Among these, heterostructures of copper chalcogenides with Au remained a unique category for their dual plasmon character. However, while sulfides and selenides of copper have been extensively reported, heterostructures of copper tellurides with Au have not been explored. Herein, the plasmonic semiconductor Cu2-xTe disks grown on Au nanoparticles (disk-on-dot) were explored as efficient photoelectrocatalysts for hydrogen evolution reactions (HER). This has been successfully designed by growing Cu2-xTe disks on presynthesized Au nanoparticles under optimized reaction conditions. The resulting heterostructured nanocrystals acted as efficient photoelectrocatalysts for the H2 evolution reaction with a low Tafel slope and less cathodic overpotential in the presence of light. Details of their synthesis, characterization, optical properties, and electrocatalytic activities are studied and reported in this letter.

8.
J Am Chem Soc ; 143(36): 14895-14906, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34469686

ABSTRACT

Light emitting lead halide perovskite nanocrystals are currently emerging as the workhorse in quantum dot research. Most of these reported nanocrystals are isotropic cubes or polyhedral; but anisotropic nanostructures with controlled anisotropic directions still remain a major challenge. For orthorhombic CsPbBr3, the 1D shaped nanostructures reported are linear and along either of the axial directions ⟨100⟩. In contrast, herein, spiral CsPbBr3 perovskite nanorods in the orthorhombic phase are reported with unusual anisotropy having (101) planes remaining perpendicular to the major axis [201]. While these nanorods are synthesized using the prelattice of orthorhombic Cs2CdBr4 with Pb(II) diffusion, the spirality is controlled by manipulation of the compositions of alkylammonium ions in the reaction system which selectively dissolve some spiral facets of the nanorods. Further, as spirality varied with facet creation and elimination, these nanorods were explored as photocatalysts for CO2 reduction, and the evolution of methane was also found to be dependent on the depth of the spiral nanorods. The entire study demonstrates facet manipulation of complex nanorods, and these results suggest that even if perovskites are ionic in nature, their shape could be constructed by design with proper reaction manipulation.

9.
Front Chem ; 9: 803860, 2021.
Article in English | MEDLINE | ID: mdl-35004623

ABSTRACT

The development of an efficient, sustainable, and inexpensive metal-free catalyst for oxygen evolution reaction (OER) via photoelectrochemical water splitting is very demanding for energy conversion processes such as green fuel generators, fuel cells, and metal-air batteries. Herein, we have developed a metal-free pyrene-based nitrogen and sulfur containing conjugated microporous polymer having a high Brunauer-Emmett-Teller surface area (761 m2 g-1) and a low bandgap of 2.09 eV for oxygen evolution reaction (OER) in alkaline solution. The π-conjugated as-synthesized porous organic material (PBTDZ) has been characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state 13C (cross-polarization magic angle spinning-nuclear magnetic resonance) CP-MAS NMR, N2 adsorption/desorption analysis, field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) experiments. The material acts as an efficient catalyst for photoelectrochemical OER with a current density of 80 mA/cm2 at 0.8 V vs. Ag/AgCl and delivered 104 µmol of oxygen in a 2 h run. The presence of low bandgap energy, π-conjugated conducting polymeric skeleton bearing donor heteroatoms (N and S), and higher specific surface area associated with inherent microporosity are responsible for this admirable photoelectrocatalytic activity of PBTDZ catalyst.

10.
J Phys Chem Lett ; 11(16): 6921-6934, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32787200

ABSTRACT

In current research, halide perovskite nanocrystals have emerged as one of the potential materials for light-harvesting and photovoltaic applications. However, because of phase sensitivity, their exploration as photocatalysts in polar mediums is limited. It has been recently reported that these nanocrystals are capable of driving solar-to-chemical production through CO2 reduction. Using bare nanocrystals and also coupling in different supports, several reports on CO2 reduction in low polar mediums were reported, and the mechanism of involved redox processes was also proposed. Considering the importance of this upcoming catalytic activity of perovskites, in this Perspective, details of the developments in the field established to date and supported by several established facts are reported. In addition, some unestablished stories or unsolved pathways surrounding the redox process and the importance of using a polar solvent which confused the understanding of the exclusive roles of perovskite nanocrystals in catalysis are also discussed. Further, the future prospects of these materials that face challenges in dispersing in polar solvents, a key process in redox catalysis for CO2 reduction, are also discussed.

11.
J Phys Chem Lett ; 11(9): 3608-3614, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32311260

ABSTRACT

Light-emitting lead halide perovskite nanocrystals are typically obtained in a six-faceted cube shape. However, for applications such as catalysis, more active facets for the adsorption/desorption of reactants/products and the suppression of carrier recombination are essentially required. To meet these challenges, herein CsPbBr3 perovskite nanocrystals in cube and faceted noncube shapes were explored for photocatalytic reductions of CO2. Importantly, halide-deficient dim multifaceted noncube emitters having less than 1% photoluminescence quantum yields showed superior catalytic activity compared to that of bright halide-rich cube nanocrystals. Beyond these, hexapod-shaped nanocrystals were also explored, and these remained in an intermediate state. With the support of density functional theory, the adsorption and desorption probabilities of reactants/products on different facets were also calculated and correlated with experimental findings. These results indicated that facets and defects of perovskite nanocrystals are equally important for carrying out catalytic reactions.

12.
J Phys Chem Lett ; 10(24): 7965-7969, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31790594

ABSTRACT

Lead halide perovskite nanocrystals have recently emerged as an efficient optical material for light harvesting. While these have been extensively studied for obtaining bright emissions, their use as catalysts for enhancing the rate of chemical reactions has been explored little. Considering their importance in catalysis, herein, Fe(II)-doped CsPbBr3 perovskite nanocrystals have been explored for photocatalytic reduction of CO2. In comparison to undoped CsPbBr3, doped nanocrystals showed enhanced catalytic activity and also predominantly led to evolution of CH4 instead of CO. The observation of a reverse trend of predominated CH4 evolution in doped nanocrystals rather than CO observed for undoped nanocrystals was correlated to the adsorption/desorption energy of respective products established theoretically earlier. This selective evolution of major products on doping remained unique and also a step forward for understanding more regarding light to chemical energy conversions using perovskite nanocrystals.

13.
J Am Chem Soc ; 141(40): 16160-16168, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31510737

ABSTRACT

Highly emissive isotropic CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals are typically observed in a six-faceted cube shape. When a unique approach is adopted and the reaction medium is enriched with halides, arm growth on all six facets was carried out and reported. Analysis suggested that these armed nanostructures were obtained from intermediate polyhedron shaped structures having 26 facets, and these were formed under halide-deficient conditions. Surface energy calculations further supported the possible existence of all facets for both of these structures under different halide composition environments. The entire study was first explored for CsPbBr3 and then extended to CsPbCl3; however, for CsPbI3 nanocrystals, Sr(II) dopant was used for obtaining stable emission. Arm lengths could also be tuned with a function of reaction temperature for CsPbBr3. Formation of stable facets in polyhedron shaped nanostructures and their transformation to respective hexapods under halide-deficient and halide-rich conditions add new fundamental concepts for these nanostructures and their shape evolutions.

14.
ACS Appl Mater Interfaces ; 7(33): 18344-52, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26244558

ABSTRACT

In this study, we demonstrate development of p-Cu2O thin films through cathodic electrodeposition technique at constant current of 0.1 mA/cm(2) on Cu, Al, and indium tin oxide (ITO) substrates from basic CuSO4 solution containing Triton X-100 as the surfactant at 30-35 °C. The optical and morphological characterizations of the semiconductors have been carried out using UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The band gap energy of ∼2.1 eV is recorded, whereas SEM reveals that the surface morphology is covered with Cu2O semiconductors. XRD analyses confirm that with change in substrate, the size of Cu2O "cubic" crystallites decreases from ITO to Al to Cu substrates. Photoelectrochemical characterizations under dark and illuminated conditions have been carried out through linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopic analysis. The photoelectrochemical reduction of water (H2O → H2) in pH 4.9 aqueous solutions over the different substrates vary in the order of Cu > Al > ITO. The highest current of 4.6 mA/cm(2) has been recorded over the Cu substrate even at a low illumination of 35 mW/cm(2), which is significantly higher than the values (2.4 mA/cm(2) on Au coated FTO or 4.07 mA/cm(2) on Cu foil substrate at an illumination of 100 mW/cm(2)) reported in literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...