Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257691

ABSTRACT

Integrated chassis control systems represent a significant advancement in the dynamics of ground vehicles, aimed at enhancing overall performance, comfort, handling, and stability. As vehicles transition from internal combustion to electric platforms, integrated chassis control systems have evolved to meet the demands of electrification and automation. This paper analyses the overall control structure of automated vehicles with integrated chassis control systems. Integration of longitudinal, lateral, and vertical systems presents complexities due to the overlapping control regions of various subsystems. The presented methodology includes a comprehensive examination of state-of-the-art technologies, focusing on algorithms to manage control actions and prevent interference between subsystems. The results underscore the importance of control allocation to exploit the additional degrees of freedom offered by over-actuated systems. This paper systematically overviews the various control methods applied in integrated chassis control and path tracking. This includes a detailed examination of perception and decision-making, parameter estimation techniques, reference generation strategies, and the hierarchy of controllers, encompassing high-level, middle-level, and low-level control components. By offering this systematic overview, this paper aims to facilitate a deeper understanding of the diverse control methods employed in automated driving with integrated chassis control, providing insights into their applications, strengths, and limitations.

2.
Appl Ergon ; 106: 103881, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36058166

ABSTRACT

A prime concern for automated vehicles is motion comfort, as an uncomfortable ride may reduce acceptance of the technology amongst the general population. However, it is not clear how transient motions typical for travelling by car affect the experience of comfort. Here, we determine the relation between properties of vehicle motions (i.e., acceleration and jerk) and discomfort empirically, and we evaluate the ability of normative models to account for the data. 23 participants were placed in a moving-base driving simulator and presented sinusoidial and triangular motion pulses with various peak accelerations (Amax0.4 - 2 ms-2) and jerks (Jmax0.5 - 15 ms-3), designed to recreate typical vehicle accelerations. Participants provided discomfort judgments on absolute 'Verbal Qualifiers' and relative 'Magnitude Estimates' associated with these motions. The data show that discomfort increases with acceleration amplitude, and that the strength of this effect depends on the direction of motion. We furthermore find that higher jerks (shorter duration pulses) are considered more comfortable, and that triangular pulses are more comfortable than sinusoidal pulses. ME responses decrease (i.e., reduced discomfort) with increasing pulse duration. Evaluations of normative models of vibration and shock (ISO 2631), and perceived motion intensity provide mixed results. The vibration model could not account for the data well. Reasonable agreement between predictions and observations were found for the shock model and perceived intensity model, which emphasize the role of acceleration. We present novel statistical models that describe motion comfort as a function of acceleration, jerk, and direction. The present findings are essential to develop motion planning algorithms aimed at maximizing comfort.


Subject(s)
Automobile Driving , Autonomous Vehicles , Humans , Acceleration , Motion , Vibration
3.
Sensors (Basel) ; 21(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770447

ABSTRACT

With the automotive industry moving towards automated driving, sensing is increasingly important in enabling technology. The virtual sensors allow data fusion from various vehicle sensors and provide a prediction for measurement that is hard or too expensive to measure in another way or in the case of demand on continuous detection. In this paper, virtual sensing is discussed for the case of vehicle suspension control, where information about the relative velocity of the unsprung mass for each vehicle corner is required. The corresponding goal can be identified as a regression task with multi-input sequence input. The hypothesis is that the state-of-art method of Bidirectional Long-Short Term Memory (BiLSTM) can solve it. In this paper, a virtual sensor has been proposed and developed by training a neural network model. The simulations have been performed using an experimentally validated full vehicle model in IPG Carmaker. Simulations provided the reference data which were used for Neural Network (NN) training. The extensive dataset covering 26 scenarios has been used to obtain training, validation and testing data. The Bayesian Search was used to select the best neural network structure using root mean square error as a metric. The best network is made of 167 BiLSTM, 256 fully connected hidden units and 4 output units. Error histograms and spectral analysis of the predicted signal compared to the reference signal are presented. The results demonstrate the good applicability of neural network-based virtual sensors to estimate vehicle unsprung mass relative velocity.


Subject(s)
Automobile Driving , Neural Networks, Computer , Bayes Theorem , Feasibility Studies , Memory, Long-Term
4.
Appl Ergon ; 71: 17-28, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29764610

ABSTRACT

Steering systems of trucks consist of many linkages, which introduce nonlinearities that may negatively affect steering performance. Nowadays, it is possible to equip steering systems with actuators that provide artificial steering characteristics. However, before new steering systems are deployed in real vehicles, evaluation in a safe and controlled simulator environment is recommended. A much-debated question is whether experiments need to be performed in a motion-base simulator or whether a fixed-base simulator suffices. Furthermore, it is unknown whether simulator-based tests can be validly conducted with a convenience sample of university participants who have not driven a truck before. We investigated the effect of steering characteristic (i.e., nonlinear vs. linear) on drivers' subjective opinions about the ride and the steering system, and on their objective driving performance in an articulated tractor-semitrailer combination. Thirty-two participants (12 truck drivers and 20 university drivers) each completed eight 5.5-min drives in which the simulator's motion system was either turned on or off and the steering model either resembled a linear (i.e., artificial) or nonlinear (i.e., realistic) system. Per drive, participants performed a lane-keeping task, merged onto the highway, and completed four overtaking manoeuvers. Results showed that the linear steering system yielded less subjective and objective steering effort, and better lane-keeping performance, than the nonlinear system. Consistent with prior research, participants drove a wider path through curves when motion was on compared to when motion was off. Truck drivers exhibited higher steering activity than university drivers, but there were no significant differences between the two groups in lane keeping performance and steering effort. We conclude that for future truck steering systems, a linear system may be valuable for improving performance. Furthermore, the results suggest that on-centre evaluations of steering systems do not require a motion base, and should not be performed using a convenience sample of university students.


Subject(s)
Automobile Driving/psychology , Motor Vehicles , Task Performance and Analysis , Adult , Computer Simulation , Humans , Male , Middle Aged , Motion , Professional Competence , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL
...