Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant Cell ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801745

ABSTRACT

The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in plants. To investigate the functions of the six maize (Zea mays) COI proteins (COI1a, COI1b, COI1c, COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The pollen of the coi2a coi2b double mutant was inviable. The coi1 quadruple mutant (coi1-4x) exhibited shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and accumulation of DWARF8 and/or DWARF9, two DELLA family proteins that repress the gibberellic acid signaling pathway. Co-expression of COI and DELLA in Nicotiana benthamiana showed that the COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in the coi1-4x mutant are gibberellic acid-inducible. In addition, most of the proteins encoded by the downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding C4-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana showed that COI2a is nucleus-localized and interacts with maize jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins, the canonical COI repressor partners. However, maize COI1a and COI1c showed only partial nuclear localization and reduced binding efficiency to the tested JAZ proteins. Together, these results show the divergent functions of the six COI proteins in regulating maize growth and defense pathways.

2.
Nucleic Acids Res ; 51(16): 8383-8401, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37526283

ABSTRACT

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.


Subject(s)
Genes, Plant , Transcriptome , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Software , Transcriptome/genetics , Atlases as Topic
4.
Front Plant Sci ; 8: 1562, 2017.
Article in English | MEDLINE | ID: mdl-29033954

ABSTRACT

Setaria viridis is an emerging model for cereal and bioenergy grasses because of its short stature, rapid life cycle and expanding genetic and genomic toolkits. Its close phylogenetic relationship with economically important crops such as maize and sorghum positions Setaria as an ideal model system for accelerating discovery and characterization of crop genes that control agronomically important traits. The Second International Setaria Genetics Conference was held on March 6-8, 2017 at the Donald Danforth Plant Science Center, St. Louis, MO, United States to discuss recent technological breakthroughs and research directions in Setaria (presentation abstracts can be downloaded at https://www.brutnelllab.org/setaria). Here, we highlight topics presented in the conference including inflorescence architecture, C4 photosynthesis and abiotic stress. Genetic and genomic toolsets including germplasm, mutant populations, transformation and gene editing technologies are also discussed. Since the last meeting in 2014, the Setaria community has matured greatly in the quality of research being conducted. Outreach and increased communication with maize and other plant communities will allow broader adoption of Setaria as a model system to translate fundamental discovery research to crop improvement.

5.
Front Plant Sci ; 7: 1781, 2016.
Article in English | MEDLINE | ID: mdl-27965689

ABSTRACT

Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.

7.
Mol Plant ; 8(10): 1520-35, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26099924

ABSTRACT

Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available.


Subject(s)
Setaria Plant/metabolism , Water/metabolism , Computational Biology , Phenotype
8.
Plant J ; 82(4): 669-79, 2015 May.
Article in English | MEDLINE | ID: mdl-25846245

ABSTRACT

JAsmonate ZIM-domain (JAZ) proteins repress the activity of transcription factors that execute responses to the plant hormone jasmonoyl-L-isoleucine (JA-Ile). The ZIM protein domain recruits the co-repressors NINJA and TOPLESS to JAZ-bound transcription factors, and contains a highly conserved TIF[F/Y]XG motif that defines the larger family of TIFY proteins to which JAZs belong. Here, we report that diverse plant species contain genes encoding putative non-TIFY JAZ proteins, including a previously unrecognized JAZ repressor in Arabidopsis (JAZ13, encoded by At3g22275). JAZ13 is most closely related to JAZ8 and includes divergent EAR, TIFY/ZIM, and Jas motifs. Unlike JAZ8, however, JAZ13 contains a Ser-rich C-terminal tail that is a site for phosphorylation. Overexpression of JAZ13 resulted in reduced sensitivity to JA, attenuation of wound-induced expression of JA-response genes, and decreased resistance to insect herbivory. JAZ13 interacts with the bHLH transcription factor MYC2 and the co-repressor TOPLESS but, consistent with the absence of a TIFY motif, neither NINJA nor other JAZs. Analysis of single and higher-order T-DNA insertion jaz null mutants provided further evidence that JAZ13 is a repressor JA signaling. Our results demonstrate that proteins outside the TIFY family are functional JAZ repressors and further suggest that this expansion of the JAZ family allows fine-tuning of JA-mediated transcriptional responses.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/genetics , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Isoleucine/analogs & derivatives , Isoleucine/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism
9.
J Exp Bot ; 66(14): 4165-76, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25711704

ABSTRACT

Growth-defence balance is the selective partitioning of resources between biomass accumulation and defence responses. Although it is generally postulated that reallocation of limited carbon pools drives the antagonism between growth and defence, little is known about the mechanisms underlying this regulation. Jasmonates (JAs) are a group of oxylipins that are required for a broad range of responses from defence against insects to reproductive growth. Application of JAs to seedlings also leads to inhibited growth and repression of photosynthesis, suggesting a role for JAs in regulating growth-defence balance. The majority of JA research uses dicot models such as Arabidopsis and tomato, while understanding of JA biology in monocot grasses, which comprise most bioenergy feedstocks, food for human consumption, and animal feed, is limited. Interestingly, JA mutants of grasses exhibit unique phenotypes compared with well-studied dicot models. Gene expression analyses in bioenergy grasses also suggest roles for JA in rhizome development, which has not been demonstrated in Arabidopsis. In this review we summarize current knowledge of JA biology in panicoid grasses-the group that consists of the world's emerging bioenergy grasses such as switchgrass, sugarcane, Miscanthus, and sorghum. We discuss outstanding questions regarding the role of JAs in panicoid grasses, and highlight the importance of utilizing emerging grass models for molecular studies to provide a basis for engineering bioenergy grasses that can maximize biomass accumulation while efficiently defending against stress.


Subject(s)
Biomass , Cyclopentanes/metabolism , Oxylipins/metabolism , Poaceae/growth & development , Herbivory , Poaceae/metabolism , Signal Transduction , Transcription Factors/metabolism
10.
Plant Physiol ; 162(2): 1006-17, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23632853

ABSTRACT

The plant hormone jasmonate (JA) activates gene expression by promoting ubiquitin-dependent degradation of jasmonate ZIM domain (JAZ) transcriptional repressor proteins. A key feature of all JAZ proteins is the highly conserved Jas motif, which mediates both JAZ degradation and JAZ binding to the transcription factor MYC2. Rapid expression of JAZ genes in response to JA is thought to attenuate JA responses, but little is known about the mechanisms by which newly synthesized JAZ proteins exert repression in the presence of the hormone. Here, we show in Arabidopsis (Arabidopsis thaliana) that desensitization to JA is mediated by an alternative splice variant (JAZ10.4) of JAZ10 that lacks the Jas motif. Unbiased protein-protein interaction screens identified three related basic helix-loop-helix transcription factors (MYC2, MYC3, and MYC4) and the corepressor NINJA as JAZ10.4-binding partners. We show that the amino-terminal region of JAZ10.4 contains a cryptic MYC2-binding site that resembles the Jas motif and that the ZIM motif of JAZ10.4 functions as a transferable repressor domain whose activity is associated with the recruitment of NINJA. Functional studies showed that the expression of JAZ10.4 from the native JAZ10 promoter complemented the JA-hypersensitive phenotype of a jaz10 mutant. Moreover, treatment of these complemented lines with JA resulted in the rapid accumulation of JAZ10.4 protein. Our results provide an explanation for how the unique domain architecture of JAZ10.4 links transcription factors to a corepressor complex and suggest how JA-induced transcription and alternative splicing of JAZ10 premessenger RNA creates a regulatory circuit to attenuate JA responses.


Subject(s)
Alternative Splicing , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Cyclopentanes/metabolism , Feedback, Physiological , Nuclear Proteins/genetics , Oxylipins/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant , Nuclear Proteins/metabolism , Oxylipins/pharmacology , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Structure, Tertiary , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism
11.
Development ; 140(9): 1924-35, 2013 May.
Article in English | MEDLINE | ID: mdl-23515473

ABSTRACT

The shoot epidermis of land plants serves as a crucial interface between plants and the atmosphere: pavement cells protect plants from desiccation and other environmental stresses, while stomata facilitate gas exchange and transpiration. Advances have been made in our understanding of stomatal patterning and differentiation, and a set of 'master regulatory' transcription factors of stomatal development have been identified. However, they are limited to specifying stomatal differentiation within the epidermis. Here, we report the identification of an Arabidopsis homeodomain-leucine zipper IV (HD-ZIP IV) protein, HOMEODOMAIN GLABROUS2 (HDG2), as a key epidermal component promoting stomatal differentiation. HDG2 is highly enriched in meristemoids, which are transient-amplifying populations of stomatal-cell lineages. Ectopic expression of HDG2 confers differentiation of stomata in internal mesophyll tissues and occasional multiple epidermal layers. Conversely, a loss-of-function hdg2 mutation delays stomatal differentiation and, rarely but consistently, results in aberrant stomata. A closely related HD-ZIP IV gene, Arabidopsis thaliana MERISTEM LAYER1 (AtML1), shares overlapping function with HDG2: AtML1 overexpression also triggers ectopic stomatal differentiation in the mesophyll layer and atml1 mutation enhances the stomatal differentiation defects of hdg2. Consistently, HDG2 and AtML1 bind the same DNA elements, and activate transcription in yeast. Furthermore, HDG2 transactivates expression of genes that regulate stomatal development in planta. Our study highlights the similarities and uniqueness of these two HD-ZIP IV genes in the specification of protodermal identity and stomatal differentiation beyond predetermined tissue layers.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Homeodomain Proteins/metabolism , Plant Epidermis/metabolism , Plant Stomata/metabolism , Arabidopsis/classification , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biomarkers/metabolism , Cell Differentiation , Cloning, Molecular , Cotyledon/cytology , Cotyledon/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Homeodomain Proteins/genetics , Mesophyll Cells/cytology , Mesophyll Cells/metabolism , Mutation , Phylogeny , Plant Epidermis/cytology , Plant Stomata/cytology , Plant Stomata/growth & development , Plants, Genetically Modified/cytology , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Transcriptional Activation , Two-Hybrid System Techniques
12.
Plant Cell ; 24(2): 536-50, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22327740

ABSTRACT

The lipid-derived hormone jasmonoyl-L-Ile (JA-Ile) initiates large-scale changes in gene expression by stabilizing the interaction of JASMONATE ZIM domain (JAZ) repressors with the F-box protein CORONATINE INSENSITIVE1 (COI1), which results in JAZ degradation by the ubiquitin-proteasome pathway. Recent structural studies show that the JAZ1 degradation signal (degron) includes a short conserved LPIAR motif that seals JA-Ile in its binding pocket at the COI1-JAZ interface. Here, we show that Arabidopsis thaliana JAZ8 lacks this motif and thus is unable to associate strongly with COI1 in the presence of JA-Ile. As a consequence, JAZ8 is stabilized against jasmonate (JA)-mediated degradation and, when ectopically expressed in Arabidopsis, represses JA-regulated growth and defense responses. These findings indicate that sequence variation in a hypervariable region of the degron affects JAZ stability and JA-regulated physiological responses. We also show that JAZ8-mediated repression depends on an LxLxL-type EAR (for ERF-associated amphiphilic repression) motif at the JAZ8 N terminus that binds the corepressor TOPLESS and represses transcriptional activation. JAZ8-mediated repression does not require the ZIM domain, which, in other JAZ proteins, recruits TOPLESS through the EAR motif-containing adaptor protein NINJA. These findings show that EAR repression domains in a subgroup of JAZ proteins repress gene expression through direct recruitment of corepressors to cognate transcription factors.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cyclopentanes/metabolism , Oxylipins/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Molecular Sequence Data , Mutagenesis, Site-Directed , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Interaction Domains and Motifs , Repressor Proteins/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...