Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Folia Biol (Praha) ; 65(2): 88-100, 2019.
Article in English | MEDLINE | ID: mdl-31464184

ABSTRACT

A single random oligonucleotide 3H primer has been previously applied in random-amplified- polymorphic-DNA (RAPD)-PCR to distinguish stocked bacteria E. coli within a cocktail mixture also containing Enterococcus faecalis, Bifidobacterium longum and Ruminococcus gnavus. In this study, we demonstrate that a 702 base pair (bp) gene fragment can be amplified as a unique pattern by RAPD-PCR using a 3H primer in human faeces containing E. coli. This unique 702 bp amplicon contained a 687 bp gene fragment identified as the C-terminal region of the glutamate-ammonia-ligase adenyltransferase (glnE) gene of E. coli. By high-resolution melt (HRM) analysis, a mean melt-curve temperature of this 702 bp amplicon was determined to be approximately 88.1 ± 0.22 degrees Celsius (°C). A combination of RAPD with HRM in one single reaction based on this amplicon can achieve semi-quantitative detection of up to 102 CFU/ml of E. coli. To increase the signal intensity of HRM, a primer pair capable of screening E. coli directly from fresh human faeces was re-designed from the 687 bp gene segment, giving a mean peak melt-curve temperature at 88.35 ± 0.11 °C. Finally, single-nucleotide polymorphisms of this 687 bp gene segment were analysed for pathogenic E. coli strains, including UMN026, O83:H1, O104:H4, O157:H7 and O169:H41. We conclude that this 687 bp segment of the glnE gene has a high potential for screening of human faecal E. coli, including pathogenic strains, in contaminated food and water.


Subject(s)
DNA Primers/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Genes, Bacterial , Glutamate-Ammonia Ligase/chemistry , Glutamate-Ammonia Ligase/genetics , Random Amplified Polymorphic DNA Technique , Amino Acid Sequence , Base Pairing/genetics , Base Sequence , Escherichia coli/isolation & purification , Feces/microbiology , Glutamate-Ammonia Ligase/metabolism , Humans , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...