Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Trace Elem Med Biol ; 84: 127448, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626650

ABSTRACT

INTRODUCTION: S. mutans has been identified as the primary pathogenic bacterium in biofilm-mediated dental caries. The biogenic selenium nanoparticles (SeNPs) produced by L. plantarum KNF-5 were used in this study against S. mutans ATCC 25175. OBJECTIVES: The aims of this study were: (1) the biosynthesis of SeNPs by L. plantarum KNF-5, (2) the characterization of SeNPs, (3) the investigation of the inhibitory effect of biogenic SeNPs against S. mutans ATCC 25175, and (4) the determination of the anti-biofilm potential of SeNPS against S. mutans ATCC 25175. METHODOLOGY: 3 mL of the culture was added to 100 mL of MRS medium and incubated. After 4 h, Na2SeO3 solution (concentration 100 µg/mL) was added and incubated at 37 °C for 36 h. The color of the culture solution changed from brownish-yellow to reddish, indicating the formation of SeNPs. The characterization of SeNPs was confirmed by UV-Vis spectrophotometry, FTIR, SEM-EDS and a particle size analyzer. The antibacterial activity was determined by the disk diffusion method, the MIC by the micro-double dilution method, and the biofilm inhibitory potential by the crystal violet method and the MTT assay. The effect of SeNPs on S. mutans ATCC 25175 was determined using SEM and CLSM spectrometry techniques. The sulfate-anthrone method was used to analyze the effect of SeNPs on insoluble extracellular polysaccharides. The expression of genes in S. mutans ATCC 25175 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). PREPARATION OF NANOPARTICLES: SeNPs produced by probiotic bacteria are considered a safe method. In this study, L. plantarum KNF-5 (probiotic strain) was used for the production of SeNPs. RESULTS: The biogenic SeNPs were spherical and coated with proteins and polysaccharides and had a diameter of about 270 nm. The MIC of the SeNPs against S. mutans ATCC 25175 was 3.125 mg/mL. Biofilm growth was also significantly suppressed at this concentration. The expression of genes responsible for biofilm formation (GtfB, GtfC, BrpA and GbpB,) was reduced when S. mutans ATCC 25175 was treated with SeNPs. CONCLUSION: It was concluded that the biogenic SeNPs produced by L. plantarum KNF-5 was highly effective to inhibit the growth of S. mutans ATCC 25175. NOVELTY STATEMENT: The application of biogenic SeNPs, a natural anti-biofilm agent against S. mutans ATCC 25175. In the future, this study will provide a new option for the prevention and treatment of dental caries.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Nanoparticles , Selenium , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/physiology , Biofilms/drug effects , Selenium/pharmacology , Selenium/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Lactobacillus plantarum/chemistry , Lactobacillus plantarum/metabolism , Particle Size
2.
Pathogens ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36678370

ABSTRACT

Wheat stem rust is one of the wheat diseases caused by Puccinia graminis Pers. f. sp. tritici (Pgt). This disease has been responsible for major losses to wheat production worldwide. Currently used methods for controlling this disease include fungicides, the breeding of stem rust-resistant cultivars, and preventive agricultural measures. However, the excessive use of fungicides can have various deleterious effects on the environment. A hyperparasitic fungus with white mycelia and oval conidia, Simplicillium lanosoniveum, was isolated from the urediniospores of Pgt. When Pgt-infected wheat leaves were inoculation with isolates of S. lanosoniveum, it was found that S. lanosoniveum inoculation inhibited the production and germination of urediniospores, suggesting that S. lanosoniveum could inhibit the growth and spread of Pgt. Scanning electron microscopy revealed that S. lanosoniveum could inactivate the urediniospores by inducing structural damage. Overall, findings indicate that S. lanosoniveum might provide an effective biological agent for the control of Pgt.

SELECTION OF CITATIONS
SEARCH DETAIL
...