Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 395: 130390, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301944

ABSTRACT

In this study, H2O2 (0.1 ‰) and NH2-MIL-101(Fe)-driven (150 mg/L) photo-Fenton-coupled anammox were proposed to simultaneously improve the removal efficiency of nitrogen and humic acid. Long-term experiments showed that the total nitrogen removal efficiency was increased by the photo-Fenton reaction to 91.9 ± 1.5 % by altering the bioavailability of refractory organics. Correspondingly, the total organic carbon removal efficiency was significantly increased. Microbial community analyses indicated that Candidatus_Brocadia maintained high activity during photo-Fenton reaction and was the most abundant genus in the reactor. Dissimilatory nitrate reduction to ammonium process and denitrification process were enhanced, resulting in reduced NO3--N production. The establishment of electron transfer between microorganisms and NH2-MIL-101 (Fe) improved the charge separation efficiency of the quantum dots and increased the intracellular adenosine triphosphate content of anammox bacteria. These results indicated that photo-Fenton-anammox process promoted the removal of nitrogen and refractory organics in one reactor which had good economic value and application prospects.


Subject(s)
Ammonium Compounds , Denitrification , Metal-Organic Frameworks , Oxidation-Reduction , Nitrogen , Hydrogen Peroxide , Anaerobic Ammonia Oxidation , Electrons , Bioreactors/microbiology , Sewage
2.
Bioresour Technol ; 354: 127226, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35477103

ABSTRACT

This objective of study was to evaluate the influence of light on the achievement of partial nitrification algal-bacterial granular bioreactor and its related nitrite accumulation mechanism. After 150-days operation, partial nitrification algal-bacterial granulation bioreactor was achieved under the 200 µmol/(m2·s) illuminance condition. The effluent NH4+-N, NO2--N, NO3--N concentrations were average at 1.1, 61.7 and 8.0 mg/L (n = 21), respectively. The average sphericity of algal-bacterial aerobic granular sludge (AB-AGS) increased from 82.7% to 91.1%, accompanied by the significantly increased diameter. Additionally, extracellular protein increased by 1.5 times and 0.5 times higher in LB-EPS and TB-EPS of AB-AGS, respectively. According to typical cycles, N2O emission amount reactor accounted for 2.4% of the removed nitrogen. Under the combined inhibition of light and free ammonia (FA), Nitrosomonas-related AOB (0.2% to 2.1%) were the predominant functional bacteria, whereas Nitrospira-related NOB (0.07% to below 0.01%) was fully inhibited.


Subject(s)
Microbiota , Nitrification , Ammonia/metabolism , Bacteria/metabolism , Bioreactors/microbiology , Nitrites/metabolism , Nitrogen/metabolism , Sewage/microbiology
3.
J Colloid Interface Sci ; 527: 87-94, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29783142

ABSTRACT

In the present study, the responses of microbial products in the biosorption process of Cu(II) onto aerobic granular sludge were evaluated by using batch and spectroscopic approaches. Batch experimental data showed that extracellular polymeric substances (EPSs) contributed to Cu(II) removal from an aqueous solution, especially when treating low metal concentrations, whereas soluble microbial products (SMPs) were released under the metal stress during biosorption process. A three-dimensional excitation-emission matrix (3D-EEM) identified four main fluorescence peaks in the EPS, i.e., tryptophan protein-like, aromatic protein-like, humic-like and fulvic acid-like substances, and their fluorescence intensities decreased gradually in the presence of Cu(II) during the sorption process. Particularly, tryptophan protein-like substances quenched the Cu(II) binding to a much higher extent through a static quenching process with less than one class of binding sites. According to the synchronous fluorescence spectra, the whole fluorescence intensity of released SMP samples expressed an increased trend with different degrees along with contact time. Two-dimensional correlation spectroscopy (2D-COS) suggested that the fulvic-like fluorescence fraction might be more susceptible to metal exposure than other fractions. The result of molecular weight distribution demonstrated that the SMPs released from the biosorption process differed significantly according to contact time. The result obtained could provide new insights into the responses of microbial products from aerobic granular sludge with heavy metal treatment.


Subject(s)
Bacteria/metabolism , Copper/chemistry , Polymers/chemistry , Sewage/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Biopolymers/chemistry , Cations, Divalent , Kinetics , Particle Size , Sewage/microbiology , Surface Properties , Thermodynamics , Waste Disposal, Fluid/methods , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...