Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 22(6): 468-76, 2016 06.
Article in English | MEDLINE | ID: mdl-26890278

ABSTRACT

BACKGROUND: ASIC1a, the predominant acid-sensing ion channels (ASICs), is implicated in neurological disorders including stroke, traumatic spinal cord injury, and ALS. Potent ASIC1a inhibitors should have promising therapeutic potential for ASIC1a-related diseases. AIMS: We examined the inhibitory effects of a number of amiloride analogs on ASIC1a currents, aimed at understanding the structure-activity relationship and identifying potent ASIC1a inhibitors for stroke intervention. METHODS: Whole-cell patch-clamp techniques and a mouse model of middle cerebral artery occlusion (MCAO)-induced focal ischemia were used. Surflex-Dock was used to dock the analogs into the pocket with default parameters. RESULTS: Amiloride and its analogs inhibit ASIC1a currents expressed in Chinese hamster ovary cells with a potency rank order of benzamil > phenamil > 5-(N,N-dimethyl)amiloride (DMA) > amiloride > 5-(N,N-hexamethylene)amiloride (HMA) ≥ 5-(N-methyl-N-isopropyl)amiloride (MIA) > 5-(N-ethyl-N-isopropyl)amiloride (EIPA). In addition, amiloride and its analogs inhibit ASIC currents in cortical neurons with the same potency rank order. In mice, benzamil and EIPA decreased MCAO-induced infarct volume. Similar to its effect on the ASIC current, benzamil showed a much higher potency than EIPA. CONCLUSION: Addition of a benzyl group to the terminal guanidinyl group resulted in enhanced inhibitory activity on ASIC1a. On the other hand, the bulky groups added to the 5-amino residues slightly decreased the activity. Among the tested amiloride analogs, benzamil is the most potent ASIC1a inhibitor.


Subject(s)
Acid Sensing Ion Channels/physiology , Amiloride/analogs & derivatives , Amiloride/pharmacology , Amiloride/chemistry , Amiloride/therapeutic use , Animals , Biophysics , CHO Cells , Cells, Cultured , Cerebral Cortex/cytology , Cricetinae , Cricetulus , Disease Models, Animal , Dose-Response Relationship, Drug , Electric Stimulation , Embryo, Mammalian , Infarction, Middle Cerebral Artery/drug therapy , Inhibitory Concentration 50 , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Models, Molecular , Neurons/drug effects , Patch-Clamp Techniques , Transfection
2.
CNS Neurosci Ther ; 21(3): 252-61, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25438992

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with a dismal prognosis. Despite intensive study on tumor biology, the underlying mechanisms of the unlimited proliferation and progressive local invasion are still poorly understood, and no effective treatment has been developed for GBM patients. AIMS: We determine the role of TRPM7 channels in the growth, migration, and infiltration of malignant glioma cells. METHODS: Using a combination of RT-PCR, Western blot, and patch-clamp techniques, we demonstrated the expression of functional TRPM7 channels of A172 cells, a human glioma cell line, as well as in human glioma tissues. Furthermore, we evaluated the role of TRPM7 in growth, migration, and infiltration of A172 cells with MTT and transwell migration and invasion assays. RESULTS: We showed the expression of functional TRPM7 channels in both A172 cells and human glioma tissues. Suppression of TRPM7 expression with TRPM7-siRNA dramatically reduced the proliferation, migration, and invasion of A172 cells. Pharmacological inhibition of TRPM7 channel with 2-aminoethoxydiphenyl borate (2-APB) showed a similar effect as TRPM7-siRNA. CONCLUSION: We demonstrate that human glioma cells express functional TRPM7 channel and that activation of this channel plays an important role in the proliferation, migration, and invasion of malignant glioma cells. TRPM7 channel may represent a novel and promising target for therapeutic intervention of malignant glioma.


Subject(s)
Brain Neoplasms/physiopathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Glioblastoma/physiopathology , Neoplasm Invasiveness/physiopathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , TRPM Cation Channels/antagonists & inhibitors , Blotting, Western , Boron Compounds/pharmacology , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Glioblastoma/drug therapy , Humans , Patch-Clamp Techniques , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
3.
Toxicol Appl Pharmacol ; 272(3): 713-25, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23958495

ABSTRACT

TRPM7, a non-selective cation channel of the TRP channel superfamily, is implicated in diverse physiological and pathological processes including cell proliferation. Recently, TRPM7 has been reported in hepatic stellate cells (HSCs). Here, we investigated the contribution role of TRPM7 in activated HSC-T6 cell (a rat hepatic stellate cell line) proliferation. TRPM7 mRNA and protein were measured by RT-PCR and Western blot in rat model of liver fibrosis in vivo and PDGF-BB-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPM7 were dramatically increased in CCl4-treated rat livers. Stimulation of HSC-T6 cells with PDGF-BB resulted in a time-dependent increase of TRPM7 mRNA and protein. However, PDGF-BB-induced HSC-T6 cell proliferation was inhibited by non-specific TRPM7 blocker 2-aminoethoxydiphenyl borate (2-APB) or synthetic siRNA targeting TRPM7, and this was accompanied by downregulation of cell cycle proteins, cyclin D1, PCNA and CDK4. Blockade of TRPM7 channels also attenuated PDGF-BB induced expression of myofibroblast markers as measured by the induction of α-SMA and Col1α1. Furthermore, the phosphorylation of ERK and AKT, associated with cell proliferation, decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TRPM7 channels contribute to perpetuated fibroblast activation and proliferation of PDGF-BB induced HSC-T6 cells via the activation of ERK and PI3K pathways. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis.


Subject(s)
Cell Proliferation , Hepatic Stellate Cells/enzymology , MAP Kinase Signaling System/physiology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-sis/physiology , TRPM Cation Channels/physiology , Animals , Becaplermin , Cell Proliferation/drug effects , Cells, Cultured , Collagen Type I, alpha 1 Chain , Fibroblasts/enzymology , Fibroblasts/metabolism , Fibroblasts/pathology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , MAP Kinase Signaling System/drug effects , Male , Rats , Rats, Sprague-Dawley
4.
Acta Pharmacol Sin ; 32(6): 734-40, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21552295

ABSTRACT

Brain ischemia is a leading cause of death and long-term disabilities worldwide. Unfortunately, current treatment is limited to thrombolysis, which has limited success and a potential side effect of intracerebral hemorrhage. Searching for new cell injury mechanisms and therapeutic interventions has become a major challenge in the field. It has been recognized for many years that intracellular Ca(2+) overload in neurons is essential for neuronal injury associated with brain ischemia. However, the exact pathway(s) underlying the toxic Ca(2+) loading remained elusive. This review discusses the role of two Ca(2+)-permeable cation channels, TRPM7 and acid-sensing channels, in glutamate-independent Ca(2+) toxicity associated with brain ischemia.


Subject(s)
Brain Ischemia/etiology , Calcium/metabolism , Receptors, Glutamate/metabolism , TRPM Cation Channels/physiology , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Humans , Neurons/metabolism , Permeability , Protein Serine-Threonine Kinases , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
5.
Anesth Analg ; 112(4): 977-81, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21385979

ABSTRACT

BACKGROUND: Lidocaine is a local anesthetic that has multiple pharmacological effects including antiarrhythmia, antinociception, and neuroprotection. Acid sensing ion channels (ASICs) are proton-gated cation channels that belong to the epithelial sodium channel/degenerin superfamily. Activation of ASICs by protons results in sodium and calcium influx. ASICs have been implicated in various physiological processes including learning/memory, nociception, and in acidosis-mediated neuron injury. In this study, we examined the effect of lidocaine on ASICs in cultured mouse cortical neurons. METHODS: ASIC currents were activated and recorded using a whole-cell patch-clamp technique in cultured mouse cortical neurons. The effects of lidocaine at different concentrations were examined. To determine whether the inhibition of lidocaine on ASIC currents is subunit specific, we examined the effect of lidocaine on homomeric ASIC1a and ASIC2a currents expressed in Chinese hamster ovary cells. RESULTS: Lidocaine significantly inhibits the ASIC currents in mouse cortical neurons. The inhibition was reversible and dose dependent. A detectable effect was noticed at a concentration of 0.3 mM lidocaine. At 30 mM, ASIC current was inhibited by approximately 90%. Analysis of the complete dose-response relationship yielded a half-maximal inhibitory concentration of 11.79 ± 1.74 mM and a Hill coefficient of 2.7 ± 0.5 (n = 10). The effect is rapid and does not depend on pH. In Chinese hamster ovary cells expressing different ASIC subunits, lidocaine inhibits the ASIC1a current without affecting the ASIC2a current. CONCLUSION: ASIC currents are significantly inhibited by lidocaine. Our finding reveals a new pharmacological effect of lidocaine in neurons.


Subject(s)
Cerebral Cortex/drug effects , Lidocaine/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Neurons/drug effects , Acid Sensing Ion Channels , Animals , CHO Cells , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Mice , Nerve Tissue Proteins/physiology , Neurons/cytology , Neurons/physiology , Sodium Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...