Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 471: 134467, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691930

ABSTRACT

The beneficial roles of hydrochar in carbon sequestration and soil improvement are widely accepted. Despite few available reports regarding polycyclic aromatic hydrocarbons (PAHs) generated during preparation, their potential negative impacts on ecosystems remain a concern. A heating treatment method was employed in this study for rapidly removing PAHs and reducing the toxicity of corn stover-based hydrochar (CHC). The result showed total PAHs content (∑PAH) decreased and then sharply increased within the temperature range from 150 °C to 400 °C. The ∑PAH and related toxicity in CHC decreased by more than 80% under 200 °C heating temperature, compared with those in the untreated sample, representing the lowest microbial toxicity. Benzo(a)pyrene produced a significant influence on the ecological toxicity of the hydrochar among the 16 types of PAHs. The impact of thermal treatment on the composition, content, and toxicity of PAHs was significantly influenced by the adsorption, migration, and desorption of PAHs within hydrochar pores, as well as the disintegration and aggregation of large molecular polymers. The combination of hydrochar with carbonized waste heat and exhaust gas collection could be a promising method to efficiently and affordably reduce hydrochar ecological toxicity.


Subject(s)
Hot Temperature , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/toxicity , Soil Pollutants/chemistry , Charcoal/chemistry , Zea mays , Soil/chemistry , Adsorption , Heating
2.
Sci Total Environ ; 930: 172815, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38679089

ABSTRACT

The ammonia nitrogen in arable land soil is susceptible to environmental and anthropogenic influences, leading to nutrient loss. This study utilized indoor soil column leaching experiments, combined with adsorption mathematical models, traditional characterization methods, and molecular dynamics simulation methods, to analyze the effects of biochar on changes in ammonium ions in different soil layers and leachate of arable land soil. The study found that applying biochar at a ratio of 10 % to arable land soil could effectively increase the ammonium ion content in the 0-10 cm soil layer by 1.57-2.36 times and reduce loss by 44.83-72.27 %. The adsorption and fixation process of biochar is controlled by electrostatic attraction and ion exchange processes. Interactions between molecules, electrostatic forces, and system internal energy also have certain effects on the process. Near the structure of C6H12O6, there are low-energy adsorption sites for ammonium ions, which can provide the energy required for electrostatic attraction. Structures such as C5H10O5, C-S-H, C-SO3, and C4H7NO4 respectively play roles in physical adsorption or chemical adsorption through displacement reactions, electron exchange, and other forms. The adsorption free energy is -394,590.84 kcal/mol, indicating stable adsorption and a process that tends to interact with the biochar surface. This study addresses issues such as the easy loss of ammonia nitrogen in arable land soil and the unclear adsorption mechanism of biochar on ammonium ions, providing a theoretical basis for the field of environmental science.

3.
Medicine (Baltimore) ; 103(13): e37586, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552094

ABSTRACT

OBJECTIVE: The development and current state of hemorrhagic fever with renal syndrome (HFRS) over the past 40 years are analyzed in this study, along with explored and discovered the hotspots and frontiers in the field, which serve as the foundation for future investigation. METHODS: CiteSpace and VOSviewer analysis software were used to visually analyze the literature data on HFRS from 1980 to 2022, including the annual number of publications, countries and research institutions, authors, co-cited literature and keywords. RESULTS: The number of pertinent papers published in the field of HFRS displayed an overall upward trend from 1980 to 2022. The United States, China, Germany, Sweden, and France are the top 5 countries in terms of publishing volume, with high intermediate centrality mainly concentrated in Europe and the United States. The top 10 co-occurring keywords were hemorrhagic fever, renal syndrome, infection, virus, epidemic, nephropathia epidemical, disease, hantavirus, outbreak, and transmission. According to keyword cluster analysis, there were 4 main research fields. In the HFRS-related study, there were mainly 21 notable keywords and "Korean hemorrhagic fever" had the highest hemorrhagic value (28.87). CONCLUSION: The United States, China, Germany, Sweden and other countries attached great importance to the HFRS-related research. Moreover, the collaboration between authors and institutions in various collaborator clusters should be strengthened. In recent decades, investigations have focused on the study of viral infection and the clinical symptoms and pathophysiology of HFRS. Future research may concentrate on factors affecting host population distribution and density, such as vaccine development and meteorological factors pertaining to virus transmission.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Humans , Hemorrhagic Fever with Renal Syndrome/epidemiology , Europe , China/epidemiology , Germany , France
4.
J Environ Manage ; 351: 119774, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38071917

ABSTRACT

As a product of hydrothermal carbonization (HTC) technology, hydrothermal carbon has shown excellent application potential in soil improvement, greenhouse gas reduction and pollution remediation. Since a large amount of water and biomass are directly used as reaction media, hydrothermal carbon produced by traditional HTC possesses poor nutrient properties and accompanied by the generation of toxic and hazardous wastewater. Here, a versatile and easily scalable strategy has been demonstrated for the one-step production of industrial nutrient-rich hydrothermal carbon (NRHC) by combining the exogenous nutrients with seaweed internal water. During the reaction process, exogenous nutrients (NH4H2PO3, KNO3, CO(NH2)2) participated in the HTC reaction and were uniformly distributed on the surface of hydrothermal carbon through surface complexation precipitation, ion exchange, and electrostatic interactions. Simulations based on density functional theory revealed that NRHC produced in presence of exogenous nutrients possessed more active sites and surface charges. Moreover, the adsorbent and adsorbate were simultaneously affected by intermolecular forces, electrostatic forces, and internal energy of the system, and the thermodynamics of adsorption process was more stable. Compared with no exogenous nutrient involvement, NRHC produced by exogenous nutrients showed 2.12, 18.56, and 25.69 times increase in the N, P, and K content. The length of the seed germination root system increased by 4.3-5.9 times, which met the standards set for agricultural fertilizer. Due to increased yield per unit volume and reduced wastewater generation, the cost of NRHC production reduced by 47.83-58.23 per cent and profit enhanced by 1.56-1.68 times, as compared to traditional HTC. This low-cost streamlined process provides a new strategy for large-scale production and direct application of hydrothermal carbon.


Subject(s)
Carbon , Wastewater , Water , Nutrients , Vegetables , Temperature
5.
J Environ Manage ; 335: 117567, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36857889

ABSTRACT

Returning straw-like agricultural waste to the field by converting it into hydrochar through hydrothermal carbonization (HTC) is an important way to realize resource utilization of waste, soil improvement, and carbon sequestration. However, the large-scale HTC is highly limited by the large water consumption and waste liquid pollution. Here, we propose strategies to optimize the liquid-solid ratio (LSR) of HTC, and comprehensively evaluate the stability, soil application potential, and economic benefits of corn stover-based hydrochar under different LSRs. The results showed that the total amount of dissolved organic carbon of hydrochars increased by 55.0% as LSR reducing from 10:1 to 2:1, while the element content, thermal stability, carbon fixation potential, specific surface area, pore volume, and functional group type were not obviously affected. The specific surface area and pore volume of hydrochar decreased by 61.8% and 70.9% as LSR reduced to 1:1, due to incomplete carbonization. According to the gray relation, hydrochar derived at LSR of 10:1 and followed by 2:1 showed greatest relation degree of 0.80 and 0.70, respectively, indicating better soil application potential. However, reducing LSR from 10:1 to 2:1 made the income of single process production increased from -388 to 968 ¥, and the wastewater generation decreased by 80%. Considering the large-scale application of HTC in fields for farmland improvement and environmental remediation, the comprehensive advantages of optimized LSR will be further highlighted.


Subject(s)
Carbon , Soil , Wastewater , Carbon Sequestration , Zea mays , Temperature
6.
Front Hum Neurosci ; 16: 912276, 2022.
Article in English | MEDLINE | ID: mdl-35814952

ABSTRACT

To study whether Tai Chi (TC) practice can improve the brain connectivity of the prefrontal lobe of college students, the positive psychological capital questionnaires and resting EEG signals were acquired from 50 college students including 25 TC practitioners and 25 demographically matched TC healthy controls. The results showed that the score of the positive psychological capital questionnaire of the TC group was significantly higher than that of the control group, and the node degree of the frontal lobe and temporal lobe of both groups was positively correlated with the score of the positive psychological capital questionnaire. In addition, the response time of the TC group under auditory stimulation was significantly shorter than that of the control group, and there was a significant positive correlation between response time and its characteristic path length, and a significant negative correlation with global efficiency. Meanwhile, during the selected range of sparsity, the difference in global network parameters between two groups is significant in the alpha band. Under all single sparsity, the clustering coefficient, global efficiency, and local efficiency of the TC group have a higher trend, while the characteristic path length tended to be shorter. In the analysis of the local characteristics of the resting brain functional network, it was found that the node degree of the frontal lobe and temporal lobe of the TC group was higher, and the difference was significant in some nodes. These results all point to the fact that TC practice has a certain impact on specific brain areas of the brain.

7.
Sci Total Environ ; 845: 157262, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35820527

ABSTRACT

As the acidification of arable soils increases, the utilization of nutrient ions such as N, P, and K decreases substantially. It causes environmental pollution and reduces crop yields. Through previous studies, acidified soil amendments have problems such as easy-retrograde and unclear mechanism. Therefore, in this study, biochar prepared by pyrolysis using peanut shells was used as a green amendment for acidified soil. Biochar with 0, 5 and 10 % biochar ratios were applied to the acidified soil, and the improvement and mechanism were investigated via experiments and software simulations. Analysis of the software simulation results revealed that biochar had the highest unit adsorption of K+ through physical adsorption at 820.38 mg/g. This was followed by PO43-, NO3-, and NH4+ as 270.51, 235.65 and 130.93 mg/g, respectively. These ions were controlled by both electrostatic and ion-exchange adsorption processes. During the improvement, the 10 % biochar ratio group performed the best with a 65.32 % reduction in the outlet volume, and the accumulated levels of nutrient ions in the leachate dropped by 48.40-68.28 % and increased by 437.80-913.87 % in the surface soil. Nutrient ion levels decreased gradually with the increase of soil depth, which agreed with the software simulation results. This study found that applying biochar to acidified soils can provide a solution to low nutrient utilization efficiency and unclear improvement mechanism of acidified soils, and provide a partial theoretical basis for the large-scale application of biochar. Future research on biochar for soil carbon sink and microbial expansion can be strengthened to contribute to environmental protection and multi-level utilization of energy.


Subject(s)
Charcoal , Soil , Ions , Nutrients
8.
PLoS One ; 15(12): e0243989, 2020.
Article in English | MEDLINE | ID: mdl-33332396

ABSTRACT

Currently, qigong and tai chi exercises are the two most common preventive as well as therapeutic interventions for chronic metabolic diseases such as type 2 diabetes mellitus (T2DM). However, the quantitative evaluation of these interventions is limited. This study aimed to evaluate the therapeutic efficacy of qigong and tai chi intervention in middle-aged and older adults with T2DM. The study included 103 eligible participants, who were randomized to participate for 12 weeks, in one of the following intervention groups for the treatment of T2DM: fitness qigong, tai chi, and control group. Three biochemical measures, including fasting plasma glucose (FPG), glycated hemoglobin (HbA1C), and C-peptide (C-P) levels, assessed at baseline and 12 weeks, served as the primary outcome measures. During the training process, 16 of the 103 participants dropped out. After the 12-week intervention, there were significant influences on HbA1C (F2,83 = 4.88, p = 0.010) and C-P levels (F2,83 = 3.64, p = 0.031). Moreover, significant reduction in C-P levels was observed after 12-week tai chi practice (p = 0.004). Furthermore, there was a significant negative correlation between the duration of T2DM and the relative changes in FPG levels after qigong intervention, and the relative changes in HbA1C levels were positively correlated with waist-to-height ratio after tai chi practice. Our study suggests that targeted qigong exercise might have a better interventional effect on patients with a longer duration of T2DM, while tai chi might be risky for people with central obesity. Trial registration: This trial was registered in Chinese Clinical Trial Registry. The registration number is ChiCTR180020069. The public title is "Health-care qigong · study for the prescription of chronic diabetes intervention."


Subject(s)
Diabetes Mellitus, Type 2/therapy , Qigong/methods , Tai Ji/methods , Aged , Blood Glucose/analysis , C-Reactive Protein/analysis , Diabetes Mellitus, Type 2/blood , Female , Glycated Hemoglobin/analysis , Humans , Male , Middle Aged , Qigong/adverse effects , Tai Ji/adverse effects
9.
Article in English | MEDLINE | ID: mdl-32850755

ABSTRACT

Wood vinegar wastewater (WVWW) is the main by-product of biomass pyrolysis process, which is more suitable to use anaerobic digestion (AD) to achieve energy recovery due to its large amount of organic matter. In this study, the up-flow anaerobic sludge bed (UASB) reactor was used to investigate the continuous anaerobic transformation of WVWW with gradient concentrations (0.3, 0.675, 1, 2, 3, 4, 5, 6, and 7 g COD/L). Then, the changes of microbial community, diversity index and functional gene were analyzed in detail. The results revealed that WVWW showed good AD performance in continuous fermentation. WVWW of organic loading rate (OLR) of >8.58 g COD/L⋅d showed severe inhibition on biodegradability and methane production, which is mainly due to the toxic substances as compared with the control group. The bacterial communities were dominated by phyla of Chloroflexi, Firmicutes, Proteobacteria, Acidobacteria, Synergistetes, and Actinobacteria. The gene abundances related to energy production, carbohydrate transport and metabolism were relatively high, which are mainly responsible for carbon forms conversion and carbohydrate degradation. This study will provide a basis for the screening and enrichment of functional bacteria and genes.

10.
Sci Rep ; 9(1): 13388, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527785

ABSTRACT

This study puts forward a new way to produce montmorillonite immobilized bimetallic nickel-iron nanoparticles by dry in-situ hydrogen reduction method in the non-liquid environment, which effectively inhibits the oxidation of iron and nickel during the synthesis process and improves the reactivity of the material. The degradation of 4-Chlorophenol (4-CP) was investigated to examine the catalytic activity of the material. The morphology and crystal properties of the montmorillonite-templated Fe/Ni bimetallic particles were explored by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and energy dispersive X-ray spectroscopy analysis. Results suggest that Fe and Ni particles were homogeneously dispersed on the montmorillonite. The optimization of Ni content and reduction temperature over the degradation of 4-CP was also studied. The introduction of Ni intensely improved the degradation of 4-CP and reached over 90% when Ni content was 28.5%. The degradation rate increased significantly with the increase of reduction temperature and showed maximum activity at the reduction tempreature of 800 °C. This study offers a new method to fabricate montmorillonite immobilized Fe/Ni bimetallic nanoparticles in the non-liquid environment and the composites exhibited high degradation activity to chlorinated organic compounds.

11.
Bioresour Technol ; 156: 78-83, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24486940

ABSTRACT

The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization.


Subject(s)
Biofuels , Biomass , Biotechnology/methods , Calcium Compounds/chemistry , Oxides/chemistry , Wood/chemistry , Biotechnology/instrumentation , Gas Chromatography-Mass Spectrometry , Hot Temperature
12.
Article in Chinese | MEDLINE | ID: mdl-18724894

ABSTRACT

OBJECTIVE: To study the effects of melatonin (MT) on nerve cell apoptosis and the expression of bcl-2 and cytochrome C genes in rat cerebrum with deltamethrin induction. METHODS: 35 male Wistar rats were randomly divided into five groups (eight rats per group): olive oil control, deltamethrin-treated (12.5 mg/kg), deltamethrin plus melatonin (25.0 mg/kg, 50 mg/kg and 100 mg/kg respectively) group. Animal models were established by intraperitoneal injection deltamethrin in rats. Nerve cell apoptosis and the protein expression of bcl-2 and cytochrome C genes were detected by flow cytometry with PI staining and immunohistochemistry respectively. RESULTS: Compared with DM group (20.73 +/- 3.34), the positive expression gradation of the bcl-2 protein in nerve cell was increased significantly in MT groups (DM + MT(25) was 45.26 +/- 3.84, DM + MT(50) 39.4 +/- 4.04 and DM + MT(100) 34.4 +/- 4.52) (P < 0.05) but significantly lower than the control group (59.33 +/- 4.03). Compared with DM group (34.86 +/- 4.15), the cytochrome C protein in nerve cell was decreased significantly in MT groups (20.53 +/- 3.17, 28.73 +/- 2.61 and 28.66 +/- 4.82 respectively) (P < 0.05). Compared with DM group (23.06 +/- 3.63), the apoptotic rate in nerve cell was decreased significantly in MT groups [(15.0 +/- 1.77)%, (14.88 +/- 1.84)% and (11.75 +/- 1.93)% respectively] (P < 0.05). CONCLUSION: MT can protect nerve cell against deltamethrin induced brain injury by inhibiting nerve cell apoptosis, downregulate the protein expression of cytochrome C gene and upregulate the protein expression of bcl-2 gene.


Subject(s)
Apoptosis/drug effects , Cytochromes c/metabolism , Hippocampus/drug effects , Melatonin/pharmacology , Neurons/metabolism , Nitriles/toxicity , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrethrins/toxicity , Animals , Cells, Cultured , Female , Hippocampus/cytology , Hippocampus/metabolism , Neurons/drug effects , Neurons/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...