Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 5, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172684

ABSTRACT

BACKGROUND: Harmonia axyridis is an effective natural enemy insect to a variety of phloem-sucking pests and Lepidopteran larvae, such as aphids, scabies, and phylloxera, while its industrial production is limited due to unmature artificial diet. Insect intestinal microbiota affect host development and reproduction. The aim of this study is to understand intestinal microbiota composition of H. axyridis and screen effective probiotics on artificial diet. Considering the role of the components and composition of the diet on the structure and composition of the intestinal microbiome, four kinds of diets were set up: (1) aphid; (2) basic diet; (3) basic diet + glucose; (4) basic diet + trehalose. The gut microbiota of H. axyridis was detected after feeding on different diets. RESULTS: Results showed that the gut microbiota between artificial diet group and aphid groups were far apart, while the basic and glucose groups were clearly clustered. Besides, the glucose group and trehalose group had one unique phylum, Cryptophyta and Candidatus Saccharibacteria, respectively. The highest abundance of Proteobacteria was found in the aphid diet. The highest abundance of Firmicutes was found in the basic diet. However, the addition of glucose or trehalose alleviated the change. In addition, the relative abundance of Enterobacter, Klebsiella, Enterobacteriaceae_unclassified, Enterobacteriales_unclassified and Serratia in the aphid group was higher than other groups. Moreover, the function of gut genes in each group also showed clear differences. CONCLUSION: These results have offered a strong link between artificial diets and gut microbes, and also have provided a theoretical basis for the screening of synergistic probiotics in artificial diet.


Subject(s)
Aphids , Coleoptera , Gastrointestinal Microbiome , Animals , Trehalose , Insecta , Diet , Enterobacter , Glucose
2.
Front Physiol ; 14: 1213654, 2023.
Article in English | MEDLINE | ID: mdl-37415905

ABSTRACT

Glutamine:fructose-6-phosphate aminotransferases (GFATs) and phosphofructokinase (PFKs) are the principal rate-limiting enzymes involved in hexosamine biosynthesis pathway (HBP) and glycolysis pathway, respectively. In this study, the NlGFAT and NlPFK were knocked down through RNA interference (RNAi) in Nilaparvata lugens, the notorious brown planthopper (BPH), and the changes in energy metabolism were determined. Knockdown of either NlGFAT or NlPFK substantially reduced gene expression related to trehalose, glucose, and glycogen metabolism pathways. Moreover, trehalose content rose significantly at 72 h after dsGFAT injection, and glycogen content increased significantly at 48 h after injection. Glucose content remained unchanged throughout the experiment. Conversely, dsPFK injection did not significantly alter trehalose, but caused an extreme increase in glucose and glycogen content at 72 h after injection. The Knockdown of NlGFAT or NlPFK significantly downregulated the genes in the glycolytic pathway, as well as caused a considerable and significant decrease in pyruvate kinase (PK) activity after 48 h and 72 h of inhibition. After dsGFAT injection, most of genes in TCA cycle pathway were upregulated, but after dsNlPFK injection, they were downregulated. Correspondingly, ATP content substantially increased at 48 h after NlGFAT knockdown but decreased to an extreme extent by 72 h. In contrast, ATP content decreased significantly after NlPFK was knocked down and returned. The results have suggested the knockdown of either NlGFAT or NlPFK resulted in metabolism disorders in BPHs, highlighting the difference in the impact of those two enzyme genes on energy metabolism. Given their influence on BPHs energy metabolism, developing enzyme inhibitors or activators may provide a biological control for BPHs.

3.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298608

ABSTRACT

The heavy metal zinc (Zn) is known to be transmitted in the food chain; however, the effect of Zn stress on beans and herbivorous insects is largely unclear. This study aimed to investigate the resistance of broad bean plants to Zn stress and the consequent changes in their physiological and biochemical metabolism by simulating heavy metal pollution in soil. Simultaneously, the effects of aphid progeny treated with different Zn concentrations on the expression of carbohydrate and related genes were analyzed. The results showed that Zn had no effect on the germination rate of broad beans, but other effects mainly manifested as follows. (1) Chlorophyll content decreased. (2) The total soluble sugar and Zn content in stems and leaves increased with increasing Zn content. (3) The proline content first increased and then decreased with increasing Zn content. (4) The height of the seedlings indicates that low concentrations promote growth and high concentrations inhibit growth. In addition, only the first-generation fecundity decreased significantly when aphids fed on heavy metal broad beans. Continuous high Zn levels increase the trehalose content of aphid F1 and F2, while F3 decreases. These results can not only provide a theoretical basis for exploring the impact of soil heavy metal pollution on ecosystems but also preliminarily evaluate the possibility of broad beans as a means of pollution remediation.


Subject(s)
Aphids , Metals, Heavy , Soil Pollutants , Vicia faba , Animals , Zinc/metabolism , Aphids/physiology , Ecosystem , Metals, Heavy/toxicity , Reproduction , Soil/chemistry , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...