Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38833406

ABSTRACT

Proper monitoring of anesthesia stages can guarantee the safe performance of clinical surgeries. In this study, different anesthesia stages were classified using near-infrared spectroscopy (NIRS) signals with machine learning. The cerebral hemodynamic variables of right proximal oxyhemoglobin (HbO2) in maintenance (MNT), emergence (EM) and the consciousness (CON) stage were collected and then the differences between the three stages were compared by phase-amplitude coupling (PAC). Then combined with time-domain including linear (mean, standard deviation, max, min and range), nonlinear (sample entropy) and power in frequency-domain signal features, feature selection was performed and finally classification was performed by support vector machine (SVM) classifier. The results show that the PAC of the NIRS signal was gradually enhanced with the deepening of anesthesia level. A good three-classification accuracy of 69.27% was obtained, which exceeded the result of classification of any single category feature. These results indicate the fesibility of NIRS signals in performing three or even more anesthesia stage classifications, providing insight into the development of new anesthesia monitoring modalities.

2.
Article in English | MEDLINE | ID: mdl-37363839

ABSTRACT

Accurate monitoring of the depth of anesthesia (DOA) is essential to ensure the safety of the operation. In this study, a new index using near-infrared spectroscopy (NIRS) signal was proposed to assess the relationship between the DOA and cerebral hemodynamic variables. METHODS: Four cerebral hemodynamic variables of 15 patients were collected, including left, right, proximal, distal, oxygenated (HbO 2) and deoxygenated (Hb) hemoglobin concentration changes. The Phase-Amplitude coupling (PAC), an adaptation of cross-frequency coupling to reflect the modulation of the amplitude of high-frequency signals by the phase of low-frequency signals, was measured and the modulation index (MI) was obtained to monitor the DOA afterwards. Meanwhile, the BIS value based on electroencephalogram is also measured and compared. RESULTS: Compared with awake period, in anesthesia maintenance period, the PAC was strengthened. The analysis of receiver operating characteristic (ROC) curve showed that the MI, especially the MI of rp-HbO2, could effectively discriminate these two periods. Additionally, during the whole anesthesia process, the BIS value was statistically consistent with the MI of cerebral hemodynamic variables, and cerebral hemodynamic variables were immune from interference by clinical electric devices. CONCLUSION: The MI of cerebral hemodynamic variables was appropriate to be used as a new index to monitor the DOA. SIGNIFICANCE: This study is of great significance to the development of new modes of anesthesia monitoring and new decoding methods, and is expected to develop a high-performance anesthesia monitoring system.


Subject(s)
Anesthesia , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Anesthesia/methods , Hemodynamics , Monitoring, Physiologic , Electroencephalography , Hemoglobins
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 267-271, 2022 07.
Article in English | MEDLINE | ID: mdl-36085815

ABSTRACT

Through source estimation, high-density electroencephalogram (EEG) signals at scalp level can be converted into signals at cerebral cortex level, which helps to measure cortical activity during anesthesia induced changes in consciousness level to explore the mechanism. In this research, the high-density EEG of propofol-induced consciousness states alterations in 20 healthy adults were converted into cortical signals of 68 regions of interest (ROI), after alpha bandpass filtering, the pairwise orthogonal power envelope connectivity (PEC) was calculated. Then, due to the number of PECs was huge, the least absolute shrinkage and selection operator (LASSO) was used to select as few PECs as possible as the indicators to distinguish baseline (BS) and moderate sedation (MD) states. The results show that most PECs that can be used as indicators are related to ROI related to default mode network (DMN). At the same time, changes of thalamocortical connectivity and frontal-parietal connectivity could be observed, similar to the neuroimaging method of directly measuring cerebral cortical activity. By extracting the PEC as a classifier to classify the BS and MD States, the accuracy could reach more than 70%. Therefore, this method can not only reflect the mechanism of cortical activity alterations induced by anesthetics, but also provide a new idea for monitoring the depth of anesthesia in the future. Clinical Relevance - This shows that the high-density EEG of scalp level can be converted into cortical signals by source estimation, which is similar to the neuroimaging method of directly measuring cortical activity.


Subject(s)
Consciousness , Propofol , Adult , Brain , Cerebral Cortex , Electroencephalography , Humans , Propofol/pharmacology
4.
Article in English | MEDLINE | ID: mdl-35696466

ABSTRACT

Monitoring the consciousness states of patients and ensuring the appropriate depth of anesthesia (DOA) is critical for the safe implementation of surgery. In this study, a high-density electroencephalogram (EEG) combined with blood drug concentration and behavioral response indicators was used to monitor propofol-induced sedation and evaluate the alterations in consciousness states. Microstate analysis, which can reflect the semi-stable state of the sub-second activation of the brain functional network, can be used to assess the brain's consciousness states. In this research, the EEG microstate sequences were constructed to compare the characteristics of corresponding sequences. Compared with the baseline (BS) state, the microstate sequences in the moderate sedation (MD) state exhibited higher complexity indexes of the multiscale sample entropy. With respect to the transition probability (TP) of microstates, most microstates tended to be converted into microstate C in the BS state. In contrast, they tended to be converted into microstate F in the MD state. The significant difference between the expected TP and observed TP could lead to the conclusion that hidden layers were present when there were changes in the consciousness states. According to the hidden Markov model, the accuracy of distinguishing the BS and MD states was 80.16%. The characteristics of microstate sequence revealed the variations in the brain states caused by alterations in consciousness states during anesthesia from a new perspective and presented a new idea for monitoring the DOA.


Subject(s)
Propofol , Brain/physiology , Brain Mapping/methods , Consciousness , Electroencephalography/methods , Humans , Propofol/pharmacology
5.
Brain Topogr ; 33(1): 37-47, 2020 01.
Article in English | MEDLINE | ID: mdl-31879854

ABSTRACT

The waveform in the time domain, spectrum in the frequency domain, and topography in the space domain of component(s) of interest are the fundamental indices in neuroscience research. Despite the application of time-frequency analysis (TFA) to extract the temporal and spectral characteristics of non-phase-locked component (NPLC) of interest simultaneously, the statistical results are not always expectedly satisfying, in that the spatial information is not considered. Complex Morlet wavelet transform is widely applied to TFA of event-related-potential (ERP) data, and mother wavelet (which should be firstly defined by center frequency and bandwidth (CFBW) before using the method to TFA of ERP data) influences the time-frequency results. In this study, an optimal set of CFBW was firstly selected from the number sets of CFBW, to further analyze for TFA of the ERP data in a cognitive experiment paradigm of emotion (Anger and Neutral) and task (Go and Nogo). Then tensor decomposition algorithm was introduced to investigate the NPLC of interest from the fourth-order tensor. Compared with the TFA results which only revealed a significant difference between Go and Nogo task condition, the tensor-based analysis showed significant interaction effect between emotion and task. Moreover, significant differences were found in both emotion and task conditions through tensor decomposition. In addition, the statistical results of TFA would be affected by the selected region of interest (ROI), whereas those of the proposed method were not subject to ROI. Hence, this study demonstrated that tensor decomposition method was effective in extracting NPLC, by considering spatial information simultaneously as the potential to explore the brain mechanisms related to experimental design.


Subject(s)
Algorithms , Electroencephalography/methods , Brain , Emotions , Evoked Potentials , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...