Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Reprogram ; 22(4): 198-207, 2020 08.
Article in English | MEDLINE | ID: mdl-32673085

ABSTRACT

Cryopreservation of oocytes/embryos is an important technique for genetic resources; however, the success of vitrification in pig oocytes remained at a relatively lower level due to the high content of lipid droplets (LDs). Considering the positive effect of L-carnitine on the function of LDs, the present study was designed to investigate the effect of the addition of L-carnitine on the vitrification of porcine cumulus cells of complexes (cumulus/oocyte complexes [COCs]). First, COCs were randomly divided into two groups: one group of COCs were commonly in vitro maturation (IVM) for 42-46 hours (nonvitrification [NV]), while another group of COCs were IVM with 10 mM L-carnitine (NVL [nonvitrification with L-carnitine addition in IVM]). In addition, random parts of COCs with L-carnitine addition were vitrified (VL [vitrification with L-carnitine addition in IVM]), while vitrification was performed on COCs without L-carnitine used as control group (V). Results showed that the maturation rate of pig oocytes reduced significantly when the vitrification was performed at 16 hours during IVM (VL vs. NVL, 40.09 ± 2.85 vs. 90.76 ± 1.16; V vs. NV, 34.41 ± 2.55 vs. 89.71 ± 1.33, p < 0.01). With the addition of L-carnitine, intracellular LDs were decreased significantly (p < 0.01). However, no difference was observed on the efficiency of vitrification in pig oocytes (VL vs. V, 40.09 ± 2.85 vs. 34.41 ± 2.55, p > 0.05). In addition, not only the reactive oxygen species (ROS) level in pig oocytes with the L-carnitine addition group reduced significantly (p < 0.01), but also the expression of SOD1 gene was improved (p < 0.05). In conclusion, results demonstrated that although no difference could be observed on pig COC vitrification, the LDs and ROS level in pig oocytes could be modified by the addition of L-carnitine, which might be helpful for further development.


Subject(s)
Carnitine/pharmacology , Cumulus Cells/drug effects , Oocytes/drug effects , Vitrification/drug effects , Animals , Cryopreservation/methods , Cumulus Cells/physiology , Female , In Vitro Oocyte Maturation Techniques , Oocytes/physiology , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Swine
2.
Cell Reprogram ; 21(3): 129-140, 2019 06.
Article in English | MEDLINE | ID: mdl-31084435

ABSTRACT

The present study was designed to investigate the comprehensive function of maternal factors of primordial germ cell 7 (PGC7) and POU5F1-POU class 5 homeobox 1 (OCT4), as well as the epigenetic modification roles on the mitosis for the extrusion of first polar body (PB1) in pig maturated oocytes. First, the common distribution of histone modifications, including H3K4me2, H3K27me3, H3K9me2, and H4K12ac and DNA methylation, were detected at the high level in the nucleus. However, only one part of the chromosome was higher methylated or acetylated when the mitosis happened to extrude the PB1. When the mitosis was inhibited by the cytochalasin B (CB) treatment, the expression of PGC7, OCT4, DNA methyltransferase1 (DNMT1), DNA methyltransferase3b (DNMT3b), tet methylcytosine dioxygenase 1 (TET1), tet methylcytosine dioxygenase 2 (TET2), and tet methylcytosine dioxygenase 3 (TET3) could be inhibited (p < 0.01), and no concentrated expression of the PGC7 and OCT4 was observed on the chromosome, but the levels of H3K9me2 and H4K12ac were higher. In addition, when the trichostatin A was performed on the in vitro maturation, the extrusion of the PB1 was inhibited too. And the histone methylation (H3K9me2 and H3K27me3) could be detected all the time with relative higher level and no demethylation could be observed. However, the expression of PGC7 and OCT4 was lower in the chromosome. It might indicate that the maternal factor of PGC7 and histone modification that included H4K12ac and H3K9me2 could regulate the extrusion of the PB1 and play an important role in the maturation of pig oocytes.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Octamer Transcription Factor-3/metabolism , Polar Bodies/metabolism , Sus scrofa/genetics , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , Female , Oocytes/metabolism , Promoter Regions, Genetic , DNA Methyltransferase 3B
3.
Zygote ; 26(1): 40-49, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29233207

ABSTRACT

Lipid droplets (LDs) are the main energy resource for porcine preimplantation embryonic development. PLIN3 has been implicated in LD formation and regulation. Therefore, this study aimed to detect the dynamic pattern of PLIN3 in pig oocytes and cumulus cells (CC) during in vitro maturation (IVM), and to determine the relationship between PLIN3 and LD content. IVM with cumulus-enclosed oocytes (CEO), cumulus-denuded oocytes (DO) and the CCs denuded from the corresponding oocytes (DCC) was performed in porcine follicular fluid (PFF) or PFF-free optimized medium. DO and the DCC were cultured together under the same conditions as described above, while the DO was named DTO and the DCC was named DTCC in this group. Firstly, our results revealed LDs distributed widely in oocytes and CC, while the PLIN3 protein coated these LDs and spread out ubiquitously in the cytoplasm. Secondly, not only the mRNA level but also at protein level of PLIN3 in immature naked oocytes (IO) was higher than that in matured CEO, DO and DTO. Although PLIN3 was expressed at lower levels in CC from immature oocytes (ICC), the protein level of PLIN3 was comparably higher in the ECC and DCC groups. The triglyceride (TG) content in CEO and DO was significantly less abundant compared with that in IO. Therefore, our results indicated that co-culturing of oocytes and CC might affect PLIN3 expression levels in CC but not in oocytes. Lipid accumulation in pig oocytes during maturation might be affected by PLIN3 cross-talk between oocytes and CC.


Subject(s)
Cumulus Cells/metabolism , In Vitro Oocyte Maturation Techniques/methods , Oocytes/physiology , Perilipin-3/metabolism , Animals , Coculture Techniques , Female , Follicular Fluid , Oocytes/metabolism , Perilipin-3/genetics , Swine , Triglycerides/metabolism
4.
Cell Reprogram ; 19(6): 354-362, 2017 12.
Article in English | MEDLINE | ID: mdl-29058487

ABSTRACT

In this study, the distribution as well as the effect of autophagy on reprogramming in pig cloned embryos were observed immediately after somatic cell nuclear transfer. Results showed that the LC3 was at the highest level in cloned embryos at 2-cell stage, and it decreased with the development from 2-cell stage to blastocyst. Different to cloned embryos, the intensity of LC3 in parthenogenetic activation (PA) embryos was at the highest level at 4-cell stage. A markedly higher level of Bmp15, H1foo, and Dppa3 was shown in cloned embryos at 2-cell stage (p < 0.05 or p < 0.01), but a significantly lower level of LC3, Sox2, and eIF1A was observed at 4-cell stage (p < 0.05), compared with PA embryos. When the efficient interfering by the LC3 siRNA was performed on the cloned embryos (p < 0.01), not only the mRNA level of maternal Cyclin B, Bmp15, Gdf9, c-mos, H1foo, and Dppa3 was increased significantly (p < 0.05), but also the expression of Dnmt1 and Dnmt3b was obviously upregulated (p < 0.05). Although the expression of Sox2 and Oct4 is not changed, the expression of Stat3 decreased significantly (p < 0.05). Furthermore with the treatment of 200 nM rapamycin, the expression of eIF1A and Stat3 was significantly increased at 4-cell stage. In conclusion, the LC3-dependent autophagy mainly occurred in cloned embryos at 2-cell stage, but at 4-cell stage in PA embryos. In addition, the modulation of autophagy could affect genome activation by influencing the degradation of maternal mRNA and regulating the expression of DNA methyltransferase.


Subject(s)
Autophagy , Cloning, Organism/veterinary , Embryo, Mammalian/pathology , Epigenesis, Genetic , Galactosyltransferases/metabolism , RNA, Messenger, Stored/metabolism , Animals , DNA Methylation , Embryo, Mammalian/metabolism , Embryonic Development , Female , Galactosyltransferases/antagonists & inhibitors , Galactosyltransferases/genetics , Gene Expression Regulation, Developmental , RNA Stability , RNA, Messenger, Stored/genetics , RNA, Small Interfering , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...