Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(35): 29909-29917, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30047262

ABSTRACT

It is highly challenging to achieve an optically deformable polymer with good controllability, stability, and self-healability for fabricating an optically controlled microrobotics. Here, we present a photo-responsive self-healing supramolecular assembly cross-linked by 3,3',5,5'-azobenzenetetracarboxylic acid (t-Azo) enabling the controllable and stable deformation. The network (PAA-u) of polyacrylic acid (PAA) grafted with 2-ureido-4[1 H]-pyrimidinone (UPy) is formed via multiple intermolecular hydrogen bonds (H-bonds) between UPy and t-Azo moieties. Molecular H-bonds stabilize the cis-isomer, enables stress transfer at the interface, and also contributes to fast healability. The PAA-u/t-Azo assembly shows a green-light-induced bending deformation, which recovers its shape under the irradiation of UV light. On the basis of this controllable and reversible deformation, the PAA-u/t-Azo "hand" realizes reversible light-driven grabbing and releasing of an object by optimizing bending and recovery. The assembly also shows a fast and excellent self-healing performance irradiated by green light during deformation. The multiple-H-bonding-cross-linked assembly with stable deformation and fast self-healability can be used for the development of a multitude of advanced microrobotics.

2.
ChemSusChem ; 10(7): 1395-1404, 2017 04 10.
Article in English | MEDLINE | ID: mdl-27943638

ABSTRACT

A closed-cycle system for light-harvesting, storage, and heat release is important for utilizing and managing renewable energy. However, combining a high-energy, stable photochromic material with a controllable trigger for solid-state heat release remains a great challenge for developing photothermal fuels (PTFs). This paper presents a uniform PTF film fabricated by the assembly of close-packed bisazobenzene (bisAzo) grafted onto reduced graphene oxide (rGO). The assembled rGO-bisAzo template exhibited a high energy density of 131 Wh kg-1 and a long half-life of 37 days owing to inter- or intramolecular H-bonding and steric hindrance. The rGO-bisAzo PTF film released and accumulated heat to realize a maximum temperature difference (DT) of 15 °C and a DT of over 10 °C for 30 min when the temperature difference of the environment was greater than100 °C. Controlling heat release in the solid-state assembly paves the way to develop highly efficient and high-energy PTFs for a multitude of applications.


Subject(s)
Azo Compounds/chemistry , Benzene/chemistry , Graphite/chemistry , Hot Temperature , Oxides/chemistry , Photochemical Processes , Isomerism , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL