Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 753, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473868

ABSTRACT

Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies.


Subject(s)
Reproducibility of Results
2.
Science ; 377(6601): 116-119, 2022 07.
Article in English | MEDLINE | ID: mdl-35771904

ABSTRACT

The Miocene Climatic Optimum (MCO) from ~17 to 14 million years ago (Ma) represents an enigmatic reversal in Cenozoic cooling. A synthesis of marine paleotemperature records shows that the MCO was a local maximum in global sea surface temperature superimposed on a period from at least 19 Ma to 10 Ma, during which global temperatures were on the order of 10°C warmer than at present. Our high-resolution global reconstruction of ocean crustal production, a proxy for tectonic degassing of carbon, suggests that crustal production rates were ~35% higher than modern rates until ~14 Ma, when production began to decline steeply along with global temperatures. The magnitude and timing of the inferred changes in tectonic degassing can account for the majority of long-term ice sheet and global temperature evolution since 20 Ma.

SELECTION OF CITATIONS
SEARCH DETAIL
...