Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
J Hazard Mater ; 476: 135154, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986410

ABSTRACT

It is known that selenium (Se) enhances plant growth and arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated mechanisms are unclear. In this study, P. vittata was exposed to 50 µM arsenate (AsV) under hydroponics plus 25 or 50 µM foliar selenate. After 3-weeks of growth, the plant biomass, As and Se contents, As speciation, malondialdehyde (MDA) and glutathione (GSH and GSSG) levels, and important genes related to As-metabolism in P. vittata were determined. Foliar-Se increased plant biomass by 17 - 30 %, possibly due to 9.1 - 19 % reduction in MDA content compared to the As control. Further, foliar-Se enhanced the As contents by 1.9-3.5 folds and increased arsenite (AsIII) contents by 64 - 136 % in the fronds. The increased AsV reduction to AsIII was attributed to 60 - 131 % increase in glutathione peroxidase activity, which mediates GSH oxidation to GSSG (8.8 -29 % increase) in the fronds. Further, foliar-Se increased the expression of AsIII antiporters PvACR3;1-3;3 by 1.6 - 2.1 folds but had no impact on phosphate transporters PvPht1 or arsenate reductases PvHAC1/2. Our results indicate that foliar-Se effectively enhances plant growth and arsenic accumulation by promoting the GSH-GSSG cycle and upregulating gene expression of AsIII antiporters, which are responsible for AsIII translocation from the roots to fronds and AsIII sequestration into the fronds. The data indicate that foliar-Se can effectively improve phytoremediation efficiency of P. vittata in As-contaminated soils.

2.
J Med Virol ; 96(1): e29396, 2024 01.
Article in English | MEDLINE | ID: mdl-38235848

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , RNA-Dependent RNA Polymerase/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , RNA Splicing Factors
3.
Pediatr Cardiol ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123832

ABSTRACT

To assess the value of parameters of myocardial work for dynamic monitoring of myocardial injury after neonatal asphyxia. Fifty-three neonates with asphyxia admitted within 24 h after delivery were divided into a mild asphyxia group (n = 40) and severe asphyxia group (n = 13). Echocardiography was performed within 24 h post-birth, within 72 h post-birth (48 h after first echo), and during recovery. The left ventricular ejection fraction on M-mode echocardiography and by Simpson's biplane method (LVEF and Bi-EF, respectively), stroke volume (SV), cardiac output (CO), cardiac index (CI), global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), and other parameters were measured. Echocardiographic indicators were compared between groups and over time. GWI was significantly increased at 72 h in the mild asphyxia group (P < 0.05) but showed no significant change over time in the severe asphyxia group (P > 0.05). While GCW increased significantly over time in both groups (P < 0.05), it increased earlier in the mild asphyxia group. Time and grouping factors had independent effects on GWI and GCW (P > 0.05). The characteristics of differences in GWI and GCW between the two groups were different from those for LVEF, Bi-EF, SV, CO, CI, and GLS and their change characteristics with improvement from treatment. GWI and GCW changed significantly during recovery from neonatal asphyxia, and their change characteristics differed between mild and severe asphyxia cases. Myocardial work parameters can be used as valuable supplements to traditional indicators of left ventricular function to dynamically monitor the recovery from myocardial injury after neonatal asphyxia.

4.
J Hazard Mater ; 460: 132484, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37688872

ABSTRACT

In contaminated soils, arsenic (As) often co-exists with copper (Cu). However, its effects on As accumulation and the related mechanisms in As-hyperaccumulator Pteris vittata remain unclear. In this study, P. vittata plants were exposed to 50 µM As and/or 50 µM Cu under hydroponics to investigate the effects of Cu on plant growth and As accumulation, as well as gene expression related to arsenic uptake (P transporters), reduction (arsenate reductases), and translocation and sequestration (arsenite antiporters). After 14 d of growth and compared to the As treatment, the As concentration in P. vittata fronds increased by 1.4-times from 793 to 1131 mg·kg-1 and its biomass increased by 1.2-fold from 18.0 to 21.1 g·plant-1 in the As+Cu treatment. Copper-enhanced As accumulation was probably due to upregulated gene expressions related to As-metabolisms including As uptake (1.9-fold in P transporter PvPht1;3), translocation (2.1-2.4 fold in arsenite antiporters PvACR3/3;2) and sequestration (1.5-2.0 fold in arsenite antiporters PvACR3;1/3;3). Our results suggest that moderate amount of Cu can help to increase the As accumulation efficiency in P. vittata, which has implication in its application in phytoremedation in As and Cu co-contaminated soils.


Subject(s)
Arsenic , Arsenites , Pteris , Copper , Arsenic/toxicity , Pteris/genetics , Membrane Transport Proteins , Antiporters , Gene Expression , Soil
5.
ACS Biomater Sci Eng ; 9(10): 5832-5842, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37679307

ABSTRACT

Identification of diverse biomarkers in heterogenic circulating malignant cells (CMCs) such as circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) has crucial significance in tumor diagnosis. However, it remains a substantial challenge to achieve in situ detection of multiple miRNA markers in living cells in blood. Herein, we demonstrate that an aptamer/peptide-functionalized vector can deliver molecular beacons into targeted living CMCs in peripheral blood of patients for in situ detection of multiple cancer biomarkers, including miRNA-21 (miR-21) and miRNA-221 (miR-221). Based on miR-21 and miR-221 levels, heterogenic CMCs are identified for both nondistant metastatic and distant metastatic cancer patients. CMCs from nondistant metastatic and distant metastatic cancer patients exhibit similar miR-21 levels, while the miR-221 level in CMCs of the distant metastatic cancer patient is higher than that of the nondistant metastatic cancer patient. With the capability to realize precise probing of multiple intracellular biomarkers in living CMCs at the single-cell resolution, the nanoprobe can reveal the tumor heterogeneity and provide useful information for diagnosis and prognosis. The nanoprobe we developed would accelerate the progress toward noninvasive precise cancer diagnosis.


Subject(s)
MicroRNAs , Neoplastic Cells, Circulating , Humans , MicroRNAs/genetics , Neoplastic Cells, Circulating/pathology , Endothelial Cells/pathology , Biomarkers, Tumor/genetics
6.
Adv Sci (Weinh) ; 10(29): e2303309, 2023 10.
Article in English | MEDLINE | ID: mdl-37590231

ABSTRACT

Cell fusion plays a critical role in cancer progression and metastasis. However, effective modulation of the cell fusion behavior and timely evaluation on the cell fusion to provide accurate information for personalized therapy are facing challenges. Here, it demonstrates that the cancer cell fusion behavior can be efficiently modulated and precisely detected through employing a multifunctional delivery vector to realize cancer targeting delivery of a genome editing plasmid and a molecular beacon-based AND logic gate. The multifunctional delivery vector decorated by AS1411 conjugated hyaluronic acid and NLS-GE11 peptide conjugated hyaluronic acid can specifically target circulating malignant cells (CMCs) of cancer patients to deliver the genome editing plasmid for epidermal growth factor receptor (EGFR) knockout. The cell fusion between CMCs and endothelial cells can be detected by the AND logic gate delivered by the multifunctional vector. After EGFR knockout, the edited CMCs exhibit dramatically inhibited cell fusion capability, while unedited CMCs can easily fuse with human umbilical vein endothelial cells (HUVEC) to form hybrid cells. This study provides a new therapeutic strategy for preventing cancer progression and a reliable tool for evaluating cancer cell fusion for precise personalized therapy.


Subject(s)
Endothelial Cells , Neoplasms , Humans , Cell Fusion , Endothelial Cells/metabolism , Hyaluronic Acid , Gene Editing , Neoplasms/therapy , ErbB Receptors
7.
J Hazard Mater ; 455: 131607, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37182466

ABSTRACT

The behaviors of antimony (Sb) and arsenic (As) in plants are different, though they are chemical analogs. Here, we examined the Sb uptake and speciation in two As-hyperaccumulators P. vittata and P. cretica, which were exposed to 0.5 or 5 mg L-1 antimonate (SbV) or antimonite (SbIII) under hydroponics for 7 d. Both plants grew better under Sb exposure, especially for P. cretica. The biomass of P. cretica roots increased by 29-46% after exposing to SbV, possibly due to increased S. Further, the Sb content in P. vittata was 17-93% greater than P. cretica, with 2-3 times more SbIII than SbV in both plants and > 92% Sb being concentrated in the roots, showing limited translocation. Under SbV exposure, SbV was dominant in P. vittata roots at 86-94%, while SbIII was predominant in P. cretica roots at 36-95%. P. cretica's stronger reducing ability than P. vittata may be due to arsenate reductases HAC1 and ACR2, which were upregulated in both plants. In short, while effective in Sb accumulation, it is mostly concentrated in the roots for both plants. The differences in their accumulation and speciation may help to better understand Sb behaviors in other plants.


Subject(s)
Arsenic , Pteris , Soil Pollutants , Arsenic/toxicity , Arsenic/analysis , Antimony , Soil Pollutants/analysis , Plant Roots/chemistry , Biodegradation, Environmental
8.
Nano Lett ; 23(9): 3678-3686, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37052638

ABSTRACT

Identification of cancer metastatic sites is of importance for adjusting therapeutic interventions and treatment choice. However, identifying the location of metastatic lesions with easy accessibility and high safety is challenging. Here we demonstrate that cancer metastatic sites can be accurately detected by a triple targeting nanoprobe. Through coencapsulating molecular beacons probing a cancer biomarker (CXCR4 mRNA), a lung metastatic biomarker (CTSC mRNA), and a bone metastatic biomarker (JAG1 mRNA), the nanoprobe decorated by SYL3C conjugated hyaluronic acid and ICAM-1 specific aptamer conjugated hyaluronic acid can target diverse phenotyped circulating tumor cells (CTCs) during epithelial-mesenchymal and mesenchymal-epithelial transitions in whole blood for sensitive probing. The detection of CTCs from cancer patients shows that the nanoprobe can provide accurate information to distinguish different cancer metastasis statuses including nonmetastasis, lung metastasis, and bone metastasis. This study proposes an efficient screening tool for identifying the location of distant metastatic lesions via facile blood biopsy.


Subject(s)
Neoplastic Cells, Circulating , Humans , Hyaluronic Acid , Biomarkers, Tumor/genetics , Biopsy , RNA, Messenger/genetics , Neoplasm Metastasis
9.
Biomaterials ; 296: 122072, 2023 05.
Article in English | MEDLINE | ID: mdl-36878091

ABSTRACT

Alcohol intoxication causes serious diseases, whereas current treatments are mostly supportive and unable to convert alcohol into nontoxic products in the digestive tract. To address this issue, an oral intestinal-coating coacervate antidote containing acetic acid bacteria (AAB) and sodium alginate (SA) mixture was constructed. After oral administration, SA reduces absorption of ethanol and promotes the proliferation of AAB, and AAB converts ethanol to acetic acid or carbon dioxide and water by two sequential catalytic reactions in the presence of membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). In vivo study shows that the bacteria-based coacervate antidote can significantly reduce the blood alcohol concentration (BAC) and effectively alleviates alcoholic liver injury in mice. Given the convenience and effectiveness of oral administration, AAB/SA can be used as a promising candidate antidote for relieving alcohol-induced acute liver injury.


Subject(s)
Alcoholic Intoxication , Antidotes , Mice , Animals , Antidotes/pharmacology , Antidotes/therapeutic use , Blood Alcohol Content , Ethanol/pharmacology , Liver , Aldehyde Dehydrogenase/pharmacology
10.
Sci Bull (Beijing) ; 68(6): 622-636, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36914548

ABSTRACT

Activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway could effectively initiate antitumor immunity, but specific activation of STING pathway is still an enormous challenge. Herein, a ferroptosis-induced mitochondrial DNA (mtDNA)-guided tumor immunotherapy nanoplatform (designated as HBMn-FA) was elaborately developed for activating and boosting STING-based immunotherapy. On the one hand, the high-levels of reactive oxygen species (ROS) in tumor cells induced by HBMn-FA-mediated ferroptosis elicited mitochondrial stress to cause the release of endogenous signaling mtDNA, which specifically initiate cGAS-STING pathway with the cooperation of Mn2+. On the other hand, the tumor-derived cytosolic double-stranded DNA (dsDNA) from debris of death cells caused by HBMn-FA further activated the cGAS-STING pathway in antigen-presenting cells (e.g., DCs). This bridging of ferroptosis and cGAS-STING pathway could expeditiously prime systemic antitumor immunity and enhance the therapeutic efficacy of checkpoint blockade to suppress tumor growth in both localized and metastatic tumor models. The designed nanotherapeutic platform paves the way for novel tumor immunotherapy strategies that are based on specific activation of STING pathway.


Subject(s)
Ferroptosis , Interferon Type I , Neoplasms , Humans , DNA, Mitochondrial , Immunotherapy , Interferon Type I/metabolism , Neoplasms/therapy , Nucleotidyltransferases/genetics
11.
Biochem Biophys Res Commun ; 644: 8-14, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36621150

ABSTRACT

Multiple lines of evidences have unraveled the emerging role of ferroptosis in the pathophysiological process of acute lung injury (ALI). In this study, we aimed to decipher the role of BACH1 in the onset and progression of ALI with a focus on ferroptosis and elucidated potential molecular mechanism. We observed that BACH1 expression was drastically elevated in BEAS-2B cells upon exposure to LPS. In the functional aspect, BACH1 deletion exerted an anti-inflammatory property, featured by decreased the secretion of several cytokines including TNF-α, IL-1ß and IL-6 in the face of LPS challenge. What's more important, BACH1 knockout evidently repressed LPS-triggered oxidative stress damage, as evidenced by reduced reactive oxygen species (ROS) production and malondialdehyde (MDA) generation, accompanied with the elevated the activities of superoxide dismutase (SOD), GSH-Px and CAT. Meanwhile, ablation of BACH1 restrained LPS-elicited ferroptosis, as characterized by decreased iron content and PTGS2 expression, accompanied with increased expression of SLC7A11 and GPX4. In terms of mechanism, Nrf2/HO-1 signaling inhibitor effectively abrogated the beneficial effects of BACH1 inhibition on LPS-stimulated inflammation, oxidative damage and ferroptosis. Taken together, these preceding outcomes strongly illuminated that BACH1 was a novel regulator of LPS-evoked injury through regulation of inflammation response, oxidative stress and ferroptosis via activation Nrf2/HO-1 signaling, indicating that BACH1 may represent as a promising novel therapeutic candidate for ALI treatment.


Subject(s)
Acute Lung Injury , Ferroptosis , Humans , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/drug therapy , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Inflammation/genetics , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Heme Oxygenase-1/metabolism
12.
Environ Sci Technol ; 57(1): 190-200, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36521032

ABSTRACT

Phytate as a root exudate is rare in plants as it mainly serves as a P storage in the seeds; however, As-hyperaccumulator Pteris vittata effectively secretes phytate and utilizes phytate-P, especially under As exposure. This study investigated the effects of As on its phytate and phytase exudation and the impacts of As and/or phytate on each other's uptake in P. vittata through two hydroponic experiments. Under 10-100 µM arsenate (AsV), the exudation of phytate and phytase by P. vittata was increased by 50-72% to 20.4-23.4 µmol h-1 g-1 and by 28-104% to 18.6-29.5 nmol h-1 plant-1, but they were undetected in non-hyperaccumulator Pteris ensiformis at 10 µM AsV. Furthermore, compared to 500 µM phytate, the phytate concentration in the growth media was reduced by 69% to 155 µM, whereas the P and As contents in P. vittata fronds and roots were enhanced by 68-134% and 44-81% to 2423-2954 and 82-407 mg kg-1 under 500 µM phytate plus 50 µM AsV. The increased P/As uptake in P. vittata was probably attributed to 3.0-4.5-fold increase in expressions of P transporters PvPht1;3-1;4. Besides, under As exposure, plant P may be converted to phytate in P. vittata roots, thereby increasing phytate's contents by 84% to 840 mg kg-1. Overall, our results suggest that As-induced phytate/phytase exudation and phytate-P uptake stimulate its growth and As hyperaccumulation by P. vittata.


Subject(s)
6-Phytase , Arsenic , Pteris , Soil Pollutants , 6-Phytase/metabolism , Pteris/metabolism , Phytic Acid/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Biodegradation, Environmental
13.
Adv Mater ; 35(16): e2207227, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36314402

ABSTRACT

The chronic rejection responses and side effects of the systematic administration of immunosuppressants are the main obstacles to heart allograft and patient survival. The development of xenotransplantation also urgently requires more efficient immune regulation strategies. Herein, it is demonstrated that lymph-node (LN)-targeted drug delivery can realize LN-specific immunomodulation with attenuated immune suppression on distant peripheral immune organs to effectively prolong long-term survival after heart transplantation in a chronic murine heart transplantation model. A chemokine C-C motif ligand 21 (CCL21) specific aptamer for LN targeting is decorated onto the surface of the hybrid nanoparticular delivery vector mainly composed of CaCO3 /CaP/heparin. The targeting delivery system can dramatically enhance accumulation of the loaded immunosuppressant, fingolimod hydrochloride (FTY720), in draining lymph nodes (dLNs) for inducing powerful immune suppression. By promoting the generation of endogenous regulatory T cells (Tregs ) and decreasing the proportion of effector T cells (Teffs ) in dLNs after heart transplantation, the LN-targeting strategy can effectively regulate local immune responses instead of systemic immunity, which reduces the incidence of long-term complications. This study provides an efficient strategy to improve the survival rate after organ transplantation by precise and localized immunoregulation with minimized side effects of immunosuppression.


Subject(s)
Heart Transplantation , Lymph Nodes , Mice , Humans , Animals , Drug Delivery Systems , Immunosuppressive Agents/pharmacology , Fingolimod Hydrochloride/pharmacology , Immune Tolerance , Immunity , Immunomodulation
14.
Adv Healthc Mater ; 12(4): e2202155, 2023 02.
Article in English | MEDLINE | ID: mdl-36333906

ABSTRACT

Cancer heterogeneity plays a vital part in cancer resistance and metastasis. To provide a reliable approach to exert a therapy action and evaluate its efficiency in heterogeneous cancer cells, a multiple targeting delivery vector composed of histone encapsulating the therapeutic or diagnostic agent, hyaluronic acid targeting CD44 overexpressed in stem tumor cells, SYL3C aptamer targeting epithelial cell adhesion molecule (EpCAM) overexpressed in epithelial cancer cells, and CL4 aptamer targeting epidermal growth factor receptor (EGFR) overexpressed in mesenchymal cancer cells, is developed. The vector can efficiently target different cancer cells and circulating tumor cells (CTCs) in the peripheral blood of patients for mucin 1 (MUC1) knockout. Furthermore, the multiple targeting vector can be used to co-encapsulate three types of molecular beacons for probing various mRNA biomarkers at single-cell resolution after genome editing. This study provides an efficient approach for exerting therapeutic actions in heterogeneous cancer cells and assessing the therapeutic efficacy by detection of cancer biomarkers via liquid biopsy.


Subject(s)
Neoplastic Cells, Circulating , Humans , Cell Line, Tumor , Epithelial Cell Adhesion Molecule/genetics , Neoplastic Cells, Circulating/metabolism , Biomarkers, Tumor
15.
Anal Chem ; 94(49): 17334-17340, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36456915

ABSTRACT

Cell-cell fusion studies provide an experimental platform for evaluating disease progression and investigating cell infection. However, to realize sensitive and quantitative detection on cell-cell fusion is still a challenge. Herein, we report a facile molecular beacon (MB)-based method for precise detection on cell-cell fusion. By transfection of the spike protein (S protein) and enhanced green fluorescent protein (EGFP) in HEK 293 cells, the virus-mimicking fusogenic effector cells 293-S-EGFP cells were constructed to interact with target cells. Before mixing the effector cells with the target cells, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in 293-S-EGFP cells was silenced, and the MB for GAPDH mRNA detection was delivered into the GAPDH silenced 293-S-EGFP cells. Once cell-cell fusion occurred, MB migrated from the GAPDH silenced effector cells to the target cells and hybridized with GAPDH mRNA in the target cells to induce fluorescence emission. The cell-cell fusion can be easily visualized and quantitated by fluorescence microscopy and flow cytometry. The fluorescence intensity is strongly dependent on the number of fused target cells. This MB-based method can easily identify the differences in the cell fusions for various target cells with different angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) expression levels, resulting in dramatically different fluorescence intensities in fused target cells. Our study provides a convenient and efficient quantitative detection approach to study cell-cell fusion.


Subject(s)
Cell Fusion , Humans , HEK293 Cells , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Transfection , Flow Cytometry , RNA, Messenger/genetics
16.
ACS Nano ; 16(11): 18555-18567, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36341683

ABSTRACT

Recent advances in tumor immunotherapy mainly tend to remodel the immunosuppressive tumor microenvironment (TME) for immune enhancement. However, the complexity of TME makes it unlikely to achieve satisfactory therapeutic effects with any single intervention alone. Here, we focus on exposing intrinsic features of tumor cells to trigger direct pleiotropic antitumor immunity. We develop a photosensitive nanointerferer that is engineered with a nanoscale metal-organic framework decorated with tumor cell membranes for targeted delivery of a photosensitizer and small interfering RNA, which is used to knock down cyclin-dependent kinase 4 (Cdk4). Cdk4 blockade can arrest the cell cycle of tumor cells to facilitate antigen exposure and increase the expression level of programmed cell death protein ligand 1 (PD-L1). Under laser irradiation, photodynamic damage triggered by the nanointerferer induces the release of tumor antigens and recruitment of dendritic cells (DCs), thereby promoting the antitumor activity of CD8+ T cells in combination with anti-PD-L1 antibodies. Ultimately, these events markedly retard tumor progression in a mouse model of ectopic colon tumor with negligible adverse effects. This study provides an alternative treatment for effective antitumor immunity by exciting the intrinsic potential of tumor cells to initiate immune responses while reducing immune-related toxicities.


Subject(s)
CD8-Positive T-Lymphocytes , Colonic Neoplasms , Mice , Animals , Immunotherapy , Tumor Microenvironment , Cell Cycle Checkpoints , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Cell Line, Tumor
17.
Nano Lett ; 22(21): 8608-8617, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36259687

ABSTRACT

The chemotherapeutic effectiveness of pancreatic ductal adenocarcinoma (PDAC) is severely hampered by insufficient intratumoral delivery of antitumor drugs. Here, we demonstrate that enhanced pancreatic cancer chemotherapy can be achieved by probiotic spore-based oral drug delivery system via gut-pancreas axis translocation. Clostridium butyricum spores resistant to harsh external stress are extracted as drug carriers, which are further covalently conjugated with gemcitabine-loaded mesoporous silicon nanoparticles (MGEM). The spore-based oral drug delivery system (SPORE-MGEM) migrates upstream into pancreatic tumors from the gut, which increases intratumoral drug accumulation by ∼3-fold compared with MGEM. In two orthotopic PDAC mice models, tumor growth is markedly suppressed by SPORE-MGEM without obvious side effects. Leveraging the biological contact of the gut-pancreas axis, this probiotic spore-based oral drug delivery system reveals a new avenue for enhancing PDAC chemotherapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Probiotics , Mice , Animals , Cell Line, Tumor , Spores, Bacterial , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Drug Delivery Systems , Pancreas/pathology , Pancreatic Neoplasms
18.
Environ Sci Technol ; 56(19): 14146-14153, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36121644

ABSTRACT

Selenate enhances arsenic (As) accumulation in As-hyperaccumulator Pteris vittata, but the associated molecular mechanisms are unclear. Here, we investigated the mechanisms of selenate-induced arsenic accumulation by exposing P. vittata to 50 µM arsenate (AsV50) and 1.25 (Se1.25) or 5 µM (Se5) selenate in hydroponics. After 2 weeks, plant biomass, plant As and Se contents, As speciation in plant and growth media, and important genes related to As detoxification in P. vittata were determined. These genes included P transporters PvPht1;3 and PvPht1;4 (AsV uptake), arsenate reductases PvHAC1 and PvHAC2 (AsV reduction), and arsenite (AsIII) antiporters PvACR3 and PvACR3;2 (AsIII translocation) in the roots, and AsIII antiporters PvACR3;1 and PvACR3;3 (AsIII sequestration) in the fronds. The results show that Se1.25 was more effective than Se5 in increasing As accumulation in both P. vittata roots and fronds, which increased by 27 and 153% to 353 and 506 mg kg-1. The As speciation analyses show that selenate increased the AsIII levels in P. vittata, with 124-282% more AsIII being translocated into the fronds. The qPCR analyses indicate that Se1.25 upregulated the gene expression of PvHAC1 by 1.2-fold, and PvACR3 and PvACR3;2 by 1.0- to 2.5-fold in the roots, and PvACR3;1 and PvACR3;3 by 0.6- to 1.1-fold in the fronds under AsV50 treatment. Though arsenate enhanced gene expression of P transporters PvPht1;3 and PvPht1;4, selenate had little effect. Our results indicate that selenate effectively increased As accumulation in P. vittata, mostly by increasing reduction of AsV to AsIII in the roots, AsIII translocation from the roots to fronds, and AsIII sequestration into the vacuoles in the fronds. The results suggest that selenate may be used to enhance phytoremediation of As-contaminated soils using P. vittata.


Subject(s)
Arsenic , Arsenites , Pteris , Selenium , Soil Pollutants , Antiporters/metabolism , Antiporters/pharmacology , Arsenate Reductases/genetics , Arsenate Reductases/metabolism , Arsenates , Arsenic/metabolism , Arsenites/metabolism , Biodegradation, Environmental , Plant Roots/metabolism , Pteris/genetics , Pteris/metabolism , Selenic Acid , Selenium/metabolism , Soil , Soil Pollutants/metabolism
19.
Pharmaceutics ; 14(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35890334

ABSTRACT

Chronic hepatitis B is a critical cause of many serious liver diseases such as hepatocellular carcinoma (HCC). The main challenges in hepatitis B treatment include the rebound of hepatitis B virus (HBV)-related antigen levels after drug withdrawal and the immunosuppression caused by the virus. Herein, we demonstrate that the HBV-related antigen can be effectively inhibited and antiviral immunity can be successfully reactivated through codelivery of the small interfering RNA (siRNA) targeting HBV X protein (HBx) and the plasmid encoding interleukin 12 (pIL-12) to hepatocytes and immune cells. After being treated by the siRNA/pIL-12 codelivery system, HBx mRNA and hepatitis B surface antigen (HBsAg) are dramatically reduced in HepG2.215 cells. More importantly, the downregulated CD47 and programmed death ligand 1 (PD-L1) and the upregulated interferon-ß promoter stimulator-1 (IPS-1), retinoic acid-inducible gene-1 (RIG-1), CD80, and human leukocyte antigen-1 (HLA-1) in treated HepG2.215 cells indicate that the immunosuppression is reversed by the codelivery system. Furthermore, the codelivery system results in inhibition of extracellular regulated protein kinases (ERK) and phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) pathways, as well as downregulation of B-cell lymphoma-2 (Bcl-2) and upregulation of p53, implying its potential in preventing the progression of HBV-induced HCC. In addition, J774A.1 macrophages treated by the codelivery system were successfully differentiated into the M1 phenotype and expressed enhanced cytokines with anti-hepatitis B effects such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Therefore, we believe that codelivery of siRNA and pIL-12 can effectively inhibit hepatitis B virus, reverse virus-induced immunosuppression, reactivate antiviral immunity, and hinder the progression of HBV-induced hepatocellular carcinoma. This investigation provides a promising approach for the synergistic treatment of HBV infection.

20.
Anal Chem ; 94(30): 10610-10616, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35856393

ABSTRACT

To study the heterogeneity of circulating tumor cells (CTCs) is of crucial importance to analyze cancer progression and metastasis. However, in situ detection of highly heterogeneous CTCs in peripheral blood still faces an elusive challenge. Here, we show direct detection of two metastasis-related mRNAs of diverse CTCs in whole blood by a triple-targeting nanoprobe. In the nanoprobe, two kinds of molecular beacons, MB1 to detect RPL15 mRNA and MB2 to detect E-cadherin (E-cad) mRNA, are loaded in a highly efficient delivery vector decorated with EpCAM-targeted SYL3C, EGFR-targeted CL4, and CD44-targeted hyaluronic acid chains to specifically deliver MB1/MB2 into epithelial, mesenchymal, and stem CTCs in unprocessed peripheral blood. The numbers of RPL15+ and E-cad+ CTCs are positively correlated with the metastasis stages of cancer patients. This study provides an effective strategy to realize direct observation on diverse metastasis-related genes in living CTCs with different phenotypes to provide accurate information on cancer heterogeneity and metastasis.


Subject(s)
Cadherins , Neoplastic Cells, Circulating , Ribosomal Proteins , Antigens, CD , Biomarkers, Tumor , Cadherins/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplastic Cells, Circulating/pathology , RNA, Messenger/genetics , Ribosomal Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...