Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 21: 101245, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38426078

ABSTRACT

A wide range of research has illustrated that carotenoids play a key role in human health through their versatile beneficial biological functions. Traditionally, the majority dietary sources of carotenoids for humans are obtained from vegetables and fruits, however, the contribution of animal-derived foods has attracted more interest in recent years. Livestock products such as eggs, meat, and milk have been considered as the appropriate and unique carriers for the deposition of carotenoids. In addition, with the enrichment of carotenoids, the nutritional quality of these animal-origin foods would be improved as well as the economic value. Here, we offer an overview covering aspects including the physicochemical properties of carotenoids, the situation of carotenoids fortified in livestock products, and the pathways that lead to the deposition of carotenoids in livestock products. The summary of these important nutrients in livestock products will provide references for animal husbandry and human health.

2.
Poult Sci ; 99(9): 4113-4122, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32867954

ABSTRACT

This study aimed to investigate the effects of different acute high ambient temperatures on redox status in liver of broilers. A total of 144 35-day-old Arbor Acres broilers were randomly divided into 4 groups with 6 replicates of 6 birds each and subsequently distributed in different environment chambers for acute heat stress. The temperature of 4 environment chambers were set to 26°C (control), 29°C, 32°C, 35°C for 6 h, respectively. Various indicators were tested to evaluate hepatic redox status. Then, the hallmarks of hepatocellular antioxidant and apoptosis were measured by qRT-PCR and Western Blot. The results showed that with the ambient temperature increase (i) the content of hydrogen peroxide (H2O2) and protein carbonyl (PC) in the liver of broilers increased significantly (P < 0.05), but the content of malondialdehyde (MDA) and 8-hydroxyguanosine (8-OHdG) was not affected; (ii) the activity of catalase (CAT) and glutathione reductase (GR) increased significantly (P < 0.05). Similarly, the superoxide dismutase (SOD) had an increasing tendency (P = 0.07), and the content of the reduced glutathione (GSH) was also significantly increased (P < 0.05) under high temperature; (iii) the heat shock protein (HSP70), nuclear factor erythroid-2-related factor 2 (Nrf2), and other antioxidant gene (HO-1, NQO1, GCLc, GST, SOD1, SOD2, CAT, Prx3) were upregulated in broilers liver. Moreover, the protein level of HSP70, Nrf2, and Prx3 were also upregulated; (iv) high temperature upregulated the antiapoptotic gene expression (BCL-2); however, the proapoptotic genes (BAK1, caspase-3, and caspase-9) did not change significantly; meanwhile, there was no significant changes in the protein level of caspase-3 and caspase-9. The results of this study indicated that 35-day-old Arbor Acres broilers have a certain tolerance to oxidative stress induced by high ambient temperature. Six hours of acute heat stress-activated Nrf2 signaling pathway. Meanwhile, the expression of related antioxidant genes and proteins is upregulated, consequently resulted in increased antioxidant enzymes activity and GSH. These effects enable the body to scavenge large amounts of reactive oxygen species produced by high temperature and prevent the occurrence of apoptosis.


Subject(s)
Chickens , Heat-Shock Response , Hot Temperature , Liver , Animals , Antioxidants , Chickens/physiology , Hydrogen Peroxide , Liver/physiology , Oxidation-Reduction , Oxidative Stress , Random Allocation
3.
J Nutr ; 150(4): 704-711, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32060554

ABSTRACT

BACKGROUND: The association between high selenium (Se) intake and metabolic disorders such as type 2 diabetes has raised great concern, but the underlying mechanism remains unclear. OBJECTIVE: Through targeted metabolomics analysis, we examined the liver sugar and acylcarnitine metabolism responses to supranutritional selenomethionine (SeMet) supplementation in pigs. METHODS: Thirty-six castrated male pigs (Duroc-Landrace-Yorkshire, 62.0 ± 3.3 kg) were fed SeMet adequate (Se-A, 0.25 mg Se/kg) or SeMet supranutritional (Se-S, 2.5 mg Se/kg) diets for 60 d. The Se concentration, biochemical, gene expression, enzyme activity, and energy-targeted metabolite profiles were analyzed. RESULTS: The Se-S group had greater fasting serum concentrations of glucose (1.9-fold), insulin (1.4-fold), and free fatty acids (FFAs,1.3-fold) relative to the Se-A group (P < 0.05). The liver total Se concentration was 4.2-fold that of the Se-A group in the Se-S group (P < 0.05), but expression of most selenoprotein genes and selenoenzyme activity did not differ between the 2 groups. Seven of 27 targeted sugar metabolites and 4 of 21 acylcarnitine metabolites significantly changed in response to high SeMet (P < 0.05). High SeMet supplementation significantly upregulated phosphoenolpyruvate carboxy kinase (PEPCK) activity by 64.4% and decreased hexokinase and succinate dehydrogenase (SDH) activity by 46.5-56.7% (P < 0.05). The relative contents of glucose, dihydroxyacetone phosphate, α-ketoglutarate, fumarate, malate, erythrose-4-phosphate, and sedoheptulose-7-phosphate in the Se-S group were 21.1-360% greater than those in the Se-A group (P < 0.05). The expression of fatty acid synthase (FASN) and the relative contents of carnitine, hexanoyl-carnitine, decanoyl-carnitine, and tetradecanoyl-carnitine in the Se-S group were 35-97% higher than those in the Se-A group (P < 0.05). CONCLUSIONS: Dietary high SeMet-induced hyperglycemia and hyperinsulinemia were associated with suppression of sugar metabolism and elevation of lipid synthesis in pig livers. Our research provides novel insights into high SeMet intake-induced type 2 diabetes.


Subject(s)
Carnitine/analogs & derivatives , Diet , Liver/metabolism , Selenomethionine/administration & dosage , Sugars/metabolism , Animals , Carnitine/metabolism , Diabetes Mellitus, Type 2/chemically induced , Dietary Supplements , Dose-Response Relationship, Drug , Homeostasis/drug effects , Hyperglycemia/chemically induced , Hyperinsulinism/chemically induced , Lipids/biosynthesis , Liver/chemistry , Liver/enzymology , Male , Metabolomics/methods , Models, Animal , Oxidation-Reduction , RNA, Messenger/analysis , Selenium/administration & dosage , Selenium/adverse effects , Selenium/analysis , Selenomethionine/adverse effects , Selenoproteins/genetics , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...