Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Zool Res ; 41(1): 61-69, 2020 01 18.
Article in English | MEDLINE | ID: mdl-31709784

ABSTRACT

Tylorrhynchus heterochaetus is a widespread benthic polychaete worm found in coastal brackish waters of the west Pacific. It has high ecological and economic value as a biomarker of water quality and as a high-quality feed in aquaculture and fisheries and is considered a delicacy in some areas of Asia. However, it has experienced a marked reduction in recent years due to overexploitation as well as changes in the environment and climate. Here, to comprehensively understand its genetic background and thus provide insights for better conservation and utilization of this species, we assessed the genetic variability and demographic history of T. heterochaetus individuals sampled from eight locations along the coasts of southeast China and north Vietnam based on mitochondrial cytochrome c oxidase I ( COI) sequences. We observed high haplotype diversity ( Hd), with an average of 0.926, but relatively low nucleotide diversity ( π), with a mean of 0.032 across all samples. A total of 94 polymorphic sites and 85 haplotypes were identified among 320 individuals. The pairwise genetic distances among haplotypes ranged from 0.001 to 0.067, with the high intraspecific divergence possibly reflecting geographic isolation and gene pool fragmentation. Significant genetic structures were revealed among the studied locations; specifically, the eight locations could be treated as six genetically different populations based on pairwise Φ ST results (0.026-0.951, P<0.01). A significant pattern of isolation-by-distance was detected between the genetic and geographic distances ( r=0.873, P=0.001). Three geographic lineages were defined based on phylogenetic tree and network analyses of COI haplotypes. AMOVA results indicated that genetic variations mainly occurred among the three lineages (89.96%). Tests of neutrality and mismatch distribution suggested that T. heterochaetus underwent recent population expansion. These results provide the first report on the genetic status of T. heterochaetus and will be valuable for the management of genetic resources and better understanding of the ecology and evolution in this species.


Subject(s)
Animal Distribution , DNA, Mitochondrial/genetics , Genetic Variation , Polychaeta/genetics , Animals , China , Phylogeny , Vietnam
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-793071

ABSTRACT

To investigate the effect of α-asarone on the function and expression of P-glycoprotein(P-gp)in rat brain microvascular endothelial cells(rBMECs). rBMECs were exposed to L-glutamate(100 μmol/L) for 30 mins to induce the overexpression of P-gp/multidrug resistance gene 1a(Mdr1a)on the cell membranes,which mimicked the overexpression of P-gp/Mdr1a in blood brain barrier(BBB) when drug-resistant epilepsy attacked.MTT assay was used to detect the safe range of α-asarone concentration.The model cells were intervened with different concentrations of α-asarone at 12.5,25.0,and 50.0 μg/μl for 24 hours.After the treatment of α-asarone,the expression and the function of P-gp/Mdr1 were measured by Western blotting,real-time PCR,and intracellular rhodamine 123 accumulation assays. The rBMECs,stimulated by glutamine,showed a high expression of P-gp(=1.924,=0.020)/Mdr1a(=1.788,=0.019) compared to the normal rBMECs.The treatment with 25.0(=1.924,=0.025;=1.788,=0.017) and 50.0 μg/μl(=1.924,=0.035;=1.788,=0.026) α-asarone significantly depressed the expression of P-gp/Mdr1a.The treatment with 25.0 and 50.0 μg/μl α-asarone significantly increased intracellular accumulation of Rhodamine 123 by 40% and 60% respectively. α-asarone down-regulates the high expressions of P-gp and Mdr1a mRNA in rBMECs induced by L-glutamate.Moreover and increases intracellular accumulation of rhodamine-123.Thus,α-asarone may reverse drug resistance in P-gp-mediated drug-resistant epilepsy.

3.
Can J Microbiol ; 65(7): 486-495, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30897350

ABSTRACT

Studies show that Paracoccus denitrificans can denitrify nitrogen sources under aerobic conditions. However, the lack of data on its genome sequence has restricted molecular studies and practical applications. In this study, the complete genome of P. denitrificans ATCC 19367 was sequenced and its nitrogen metabolism properties were characterized. The size of the whole genome is 5 242 327 bp, with two chromosomes and one plasmid. The average G + C content is 66.8%, and it contains 5308 protein-coding genes, 54 tRNA genes, and nine rRNA operons. Among the protein-coding genes, 71.35% could be assigned to the Gene Ontology (GO) pathway, 86.66% to the Clusters of Orthologous Groups (COG) pathway, and 50.57% to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Comparative genome analysis between P. denitrificans ATCC 19367 and P. denitrificans PD1222 revealed that there are 428 genes specific to ATCC 19367 and 4738 core genes. Furthermore, the expression of genes related to denitrification, biofilm formation, and nitrogen metabolism (nar, nir, and nor) by P. denitrificans ATCC 19367 under aerobic conditions was affected by incubation time and shaking speed. This study elucidates the genomic background of P. denitrificans ATCC 19367 and suggests the possibility of controlling nitrogen pollution in the environment by using this bacterium.


Subject(s)
Denitrification , Paracoccus denitrificans/genetics , Whole Genome Sequencing , Base Sequence , Genome, Bacterial , Paracoccus denitrificans/metabolism
4.
Article in English | WPRIM (Western Pacific) | ID: wpr-812627

ABSTRACT

The present study aimed at investigating the effects of Puerarin (PR), a major isoflavonoid isolated from the Chinese medicinal herb Puerariae radix, on bone metabolism and the underlying mechanism of action. The in vivo assay, female mice were ovariectomized (OVX), and the OVX mice were fed with a diet containing low, middle, and high doses of PR (2, 4, and 8 mg·d(-1), respectively) or 17β-estradiol (E2, 0.03 μg·d(-1)) for 4 weeks. In OVX mice, the uterine weight declined, and intake of PR at any dose did not affect uterine weight, compared with the control. The total femoral bone mineral density (BMD) was significantly reduced by OVX, which was reversed by intake of the diet with PR at any dose, especially at the low dose. In the in vitro assay, RAW264.7 cells were used for studying the direct effect of PR on the formation of osteoclasts. PR reduced the formation of tartrate resistant acid phosphatase (TRAP)-positive multi-nucleated cells in the RAW 264.7 cells induced by receptor activator for nuclear factor-κB Ligand (RANKL). MC3T3-E1 cells were used for studying the effects of PR on the expression of osteoprotegerin (OPG) and RANKL mRNA expression in osteoblasts. The expression of OPG mRNA and RANKL mRNA was detected by RT-PCR on Days of 5, 7, 10, and 12 after PR exposure. PR time-dependently enhanced the expression of OPG mRNA and reduced the expression of RANKL mRNA in MC3T3-E1 cells. In conclusion, our results suggest that PR can effectively prevent bone loss in OVX mice without any hyperplastic effect on the uterus, and the antiosteoporosis activity of PR may be related to its effects on the formation of osteoclasts and the expression of RANKL OPG in osteoblasts.


Subject(s)
Animals , Female , Humans , Mice , Bone Density , Drugs, Chinese Herbal , Femur , Chemistry , Metabolism , Isoflavones , Osteoclasts , Metabolism , Osteoporosis , Genetics , Metabolism , Osteoprotegerin , Genetics , Metabolism , Ovariectomy , Pueraria , Chemistry , RANK Ligand , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...