Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(14): e2306446, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38105592

ABSTRACT

Copper-based nanozymes exhibit excellent antitumor activity but are easily inactivated due to the disturbance of proteins or other macromolecules with sulfhydryl. A tumor microenvironment-responsive CuMnO@Fe3O4 (CMF) core-shell nanozyme for highly efficient tumor theranostics is developed. A platelet-derived growth factor receptor-ß-recognizing cyclic peptide (PDGFB) target is conjugated to the surface of CMF to fabricate a tumor-specific nanozyme (PCMF). The core-shell nanostructure significantly avoids the oxidation and inactivation of copper-based nanozyme, promoting the antitumor activity of PCMF. The weak acid- and GSH-activated T1 and T2 relaxation rate of PCMF contributes to T1 and T2 dual contrast imaging at the tumor site. In addition, the PCMF disintegrates and produces some metal ions that possess Fenton catalytic activity (i.e., Cu+, Mn2+, and Fe2+) under TME. This process significantly depletes GSH, accelerates Fenton and Fenton-like reactions, enhances cellular reactive oxygen species (ROS) levels, and induces cancer cell apoptosis and ferroptosis. PCMF also exhibits photothermal functions, so it can be used in combined photothermal therapy, ferroptosis therapy, and chemodynamic therapy, improving anticancer activity. This work provides insights into the design of an exquisite nanostructure for high-sensitive and tumor-specific theranostics.


Subject(s)
Nanostructures , Neoplasms , Humans , Precision Medicine , Copper , Tumor Microenvironment , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Neoplasms/therapy , Hydrogen Peroxide , Cell Line, Tumor
2.
Mater Horiz ; 8(3): 1017-1028, 2021 03 01.
Article in English | MEDLINE | ID: mdl-34821332

ABSTRACT

Theoretically, the Fenton catalytic efficiency of the Cu-based nanoplatform is approximately 160 times that of traditional Fe-based agents. However, the coordination interaction between Cu(ii) and intracellular GSH significantly inhibits the high catalytic activity of Cu(i) generation, dramatically decreasing the Fenton-like catalytic efficiency. Herein, we designed a completely new and highly efficient hierarchical structural nanoplatform to enhance the mimic-peroxidase activity through utilizing comproportionation between CuO and elemental Cu core to self-supply Cu(i). The catalytic rate of this nanoplatform was approximately 55-fold that of traditional Fe-based agents. In a cell assay, this nanoplatform could function as an antagonist of GPX4 and agonist of SOD-1, resulting in intracellular ROS and H2O2 accumulation. Next, the accumulated H2O2 could be quickly catalyzed to highly toxic ˙OH by self-supplying Cu(i), causing strong oxidative stress damage to mitochondria and cell membranes. Under 808 nm laser irradiation, this nanoplatform exhibited a stronger inhibition of tumor growth, and effectively overcame the tumor resistance and recurrence. In addition, this hierarchical structure significantly promoted the interaction between water molecules and gadolinium centers, making TRF-mCuGd possess an ultrahigh T1 MRI contrast performance, and hence, more pathological information of the tumor could be achieved. Overall, this work provides a promising pattern for the design and development of cancer theranostics.


Subject(s)
Hydrogen Peroxide , Nanoparticles , Cell Line, Tumor , Copper , Magnetic Resonance Imaging
3.
ACS Appl Mater Interfaces ; 12(33): 36917-36927, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32706569

ABSTRACT

This work finds that Fe3O4 nanoclusters can rearrange by Gd doping and then self-assemble to a hollow magnetic nanocluster (HMNC), providing larger magnetic moments to obtain an excellent MRI capability and increasing the number of oxygen vacancies in HMNC. The hollow structure makes platinum(IV) prodrugs effectively load into HMNC. Second, plenty of oxygen vacancy defects can capture oxygen molecules, enhance the catalytic activity of HMNC, and then promote intracellular ROS generation. On the basis of this, a targeting iRGD-labeled HMNC nanosystem (iHMNCPt-O2) is developed through loading oxygen molecules and platinum(IV) prodrugs for chemo- and chemodynamic therapy of cancer. This nanosystem shows an excellent response ability to weak acid and GSH, which can cause a series of cascade reactions in a cell. These cascade reactions are dramatically enhanced at the intracellular ROS level, cause mitochondria and DNA damage, and then induce cancer cell death. Besides, systemic delivery of iHMNCPt-O2 significantly enhanced the MRI contrast signal of tumors and improved the quality of MR images, accurately diagnosing tumors. Therefore, this work provides a novel method for accelerating the Fenton-like reaction and enhancing the MRI capability and fabricates a promising "all-in-one" system to overwhelm the problems of cancer theranostic.


Subject(s)
Antineoplastic Agents/chemistry , Contrast Media/chemistry , Gadolinium/chemistry , Magnetite Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oxygen/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Gadolinium/pharmacology , Humans , Magnetic Resonance Imaging , Oxygen/pharmacology , Platinum/chemistry , Prodrugs/chemistry , Reactive Oxygen Species/chemistry , Surface Properties , Theranostic Nanomedicine
4.
ACS Appl Mater Interfaces ; 10(37): 31114-31123, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30141893

ABSTRACT

Current magnetic resonance imaging (MRI)-guided pH-switching therapeutic platforms have encountered problems such as low relaxation rates, poor pH-switching efficiencies, and a lag in the drug release behind the MRI. Herein, we designed a nanoplatform with tunable pore size, which could match the size of drug molecules for pH-switching MRI and chemotherapy via ultrasmall manganese oxide-capped mesoporous silica nanoparticles (USMO@MSNs). USMO@MSN could quickly dissolve under weakly acidic conditions and leach abundant Mn2+ ions (leaching ratio: 76%), enhancing the MR contrast. The longitudinal relaxation rate ( r1) of USMO@MSNs significantly increased from 0.65 to 5.61 mM-1 s-1 as the pH decreased from 7.4 to 4.5, showing an ultrahigh-efficiency pH-switching T1-weighted MR contrast ability for in vivo tumor. Meanwhile, the matching pore structure allowed effective loading of doxorubicin (DOX) on USMO@MSNs to form smart therapeutic system (USMO@MSNs-DOX). The DOX release rate was strongly proportional to the pH-switching MRI signal of USMO@MSNs-DOX, allowing the release of DOX to be efficiently monitored by MRI. Confocal observations indicated that USMO@MSNs-DOX could be effectively internalized by HSC3 cells, and the entire system showed a good pH-switching theranostic performance for HSC3 cells. Therefore, this simple pH-switching system provides a new avenue for timely cancer diagnosis and personalized therapy.


Subject(s)
Doxorubicin/chemistry , Magnetic Resonance Imaging , Nanoparticles/chemistry , Theranostic Nanomedicine , Animals , Cell Line, Tumor , Doxorubicin/administration & dosage , HeLa Cells , Humans , Hydrogen-Ion Concentration , Mice , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...