Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732273

ABSTRACT

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Subject(s)
Droughts , Melatonin , Plant Roots , Salinity , Seedlings , Seeds , Triticum , Melatonin/pharmacology , Triticum/drug effects , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Triticum/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seeds/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Salt Stress , Sodium Chloride/pharmacology , Antioxidants/metabolism , Water/metabolism
2.
Front Plant Sci ; 14: 1231294, 2023.
Article in English | MEDLINE | ID: mdl-37636111

ABSTRACT

Introduction: Agricultural activities in the North China Plain are often challenged by inadequate irrigation and nutrient supply. Inadequate and improper resource utilization may impose negative impacts on agricultural sustainability. To counteract the negative impacts, a deeper understanding of the different resource management strategies is an essential prerequisite to assess the resource saving potential of crops. Methods: We explored plausible adaptation strategies including drip irrigation lateral spacings of 40 and 80 cm (hereafter referred to as LS40 and LS80, respectively), irrigating winter wheat after soil water consumption of 20 and 35 mm (hereafter represented as IS20 and IS35, respectively), and nitrogen fertilization scheme of a) applying 50% nitrogen as a basal dose and 50% as a top-dressing dose (NS50:50), b) 25% nitrogen as a basal dose and 75% as a topdressing dose (NS25:75), and c) no nitrogen application as a basal dose and 100% application as a top-dressing dose (NS0:100). Results and discussion: The consecutive 2 years (2017-2018 and 2018-2019) of field study results show that growing winter wheat under LS40 enhanced the water use efficiency (WUE), grain yield, 1,000-grain weight, and number of grains per spike by 15.04%, 6.95%, 5.67%, and 21.59% during the 2017-2018 season, respectively. Additionally, the corresponding values during the 2018-2019 season were 12.70%, 7.17%, 2.66%, and 19.25%, respectively. Irrigation scheduling of IS35 treatment improved all the growth-related and yield parameters of winter wheat. Further, treating 25% nitrogen as a basal dose and application of 75% as a top-dressing dose positively influenced the winter wheat yield. While NS0:100 increased the plant height, leaf area index (LAI), and aboveground biomass as compared to the other application strategies, but high nitrogen was observed in deeper soil layers. Regarding soil environment, the lowest soil moisture and nitrate nitrogen contents were observed in LS80 during both growing seasons. Overall, coupling the IS35 with NS25:75 under 40-cm lateral spacing is a suitable choice for sustainable winter wheat production in theNorth China Plain. The results of our study may be helpful in advancing the knowledge of the farmer community for winter wheat production. The findings can also aid in advancing new insights among scientists working on soil water and nitrogen distribution in drip irrigation for better productivity.

3.
Plants (Basel) ; 12(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36840039

ABSTRACT

Irrigation has been pivotal in sustaining wheat as a major food crop in the world and is increasingly important as an adaptation response to climate change. In the context of agricultural production responding to climate change, improved irrigation management plays a significant role in increasing water productivity (WP) and maintaining the sustainable development of water resources. Considering that wheat is a major crop cultivated in arid and semi-arid regions, which consumes high amounts of irrigation water, developing wheat irrigation management with high efficiency is urgently required. Both irrigation scheduling and irrigation methods intricately influence wheat physiology, affect plant growth and development, and regulate grain yield and quality. In this frame, this review aims to provide a critical analysis of the regulation mechanism of irrigation management on wheat physiology, plant growth and yield formation, and grain quality. Considering the key traits involved in wheat water uptake and utilization efficiency, we suggest a series of future perspectives that could enhance the irrigation efficiency of wheat.

4.
Plants (Basel) ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678988

ABSTRACT

We aimed to assess the effect of water deprivation on root traits and to establish if the wheat cultivars Spica and Maringa would be useful as parental germplasm for a genetic analysis of root traits. Plants were grown in two markedly different soils under well-watered and water-limited treatments in controlled environment growth cabinets. The drought treatment was imposed as a gradual depletion of water over 28 days as seedlings grew from a defined starting moisture content. The root traits analyzed included length, nodal root number, thickness and nodal root angle. The relative differences in traits between genotypes generally proved to be robust in terms of water treatment and soil type. Maringa had a shallower nodal root angle than Spica, which was driven by the nodal roots. By contrast, the seminal roots of Maringa were found to be similar to or even steeper than those of Spica. We conclude that the differences in root traits between Spica and Maringa were robust to the drought treatment and soil types. Phenotyping on well-watered soil is relevant for identifying traits potentially involved in conferring water use efficiency. Furthermore, Spica and Maringa are suitable parental germplasm for developing populations to determine the genetics of key root traits.

5.
Front Plant Sci ; 13: 1105006, 2022.
Article in English | MEDLINE | ID: mdl-36714732

ABSTRACT

Chemical fertilizer overuse is a major environmental threat, critically polluting soil and water resources. An optimization of nitrogen (N) fertilizer application in winter wheat (Triticum aestivum L.) in association with various irrigation scheduling is a potential approach in this regard. A 2-year field experiment was carried out to assess the growth, yield and photosynthetic capacity of drip-irrigated winter wheat subjected to various split applications of urea (240 kg ha-1, 46% N). The eight treatments were, two irrigation scheduling and six N application modes in which, one slow-release fertilizer (SRF). Irrigation scheduling was based on the difference between actual crop evapotranspiration and precipitation (ETa-P). The two irrigation scheduling were I45 (Irrigation scheduling when ETa-P reaches 45 mm) and I30 (Irrigation scheduling when ETa-P reaches 30 mm). The six N levels were N0-100 (100% from jointing to booting), N25-75 (25% during sowing and 75% from jointing to booting), N50-50 (50% during sowing and 50% from jointing to booting), N75-25 (75% during sowing and 25% from jointing to booting), N100-0 (100% during sowing), and SRF100 (240 kg ha-1, 43% N during sowing). N top-dressing application significantly (P<0.05) influenced wheat growth, aboveground biomass (ABM), grain yield (GY) and its components, photosynthetic and chlorophyll parameters, and plant nutrient content. According to the averages of the two winter wheat-growing seasons, the I45N50-50 and I45SRF100 treatments, respectively had the highest GY (9.83 and 9.5 t ha-1), ABM (19.91 and 19.79 t ha-1), net photosynthetic rate (35.92 and 34.59 µmol m-2s-1), stomatal conductance (1.387 and 1.223 mol m-2s-1), SPAD (69.33 and 64.03), and chlorophyll fluorescence FV/FM (8.901 and 8.922). The present study provided convincing confirmation that N applied equally in splits at basal-top-dressing rates could be a desirable N application mode under drip irrigation system and could economically compete with the costly SRF for winter wheat fertilization. The I45N50-50 treatment offers to farmers an option to sustain wheat production in the NCP.

6.
PLoS One ; 16(11): e0260008, 2021.
Article in English | MEDLINE | ID: mdl-34767596

ABSTRACT

To propose an appropriate nitrogen application mode and suitable drip irrigation lateral spacing, a field experiment was conducted during 2017-2018 and 2018-2019 growing seasons to quantify the different drip irrigation lateral spacings and nitrogen fertigation strategies effects on winter wheat growth, yield, and water use efficiency (WUE) in the North China Plain (NCP). The experiment consisted of three drip irrigation lateral spacing (LS) (40, 60, and 80 cm, referred to as D40, D60, and D80 respectively) and three percentage splits of nitrogen application modes (NAM) (basal and top dressing application ratio as 50:50 (N50:50), 25:75 (N25:75), and 0:100 (N0-100) respectively). The experimental findings depicted that yield and its components, and WUE were markedly affected by LS and NAM. Fertigation of winter wheat at N25:75 NAM notably (P<0.05) increased the grain yield by 4.88%, 1.83% and 8.03%, 4.61%, and WUE by 3.10%, 3.18% and 5.37%, 7.82%, compared with those at NAM N50:50 and N0:100 in 2017-2018 and 2018-2019 growing seasons, respectively. LS D40 appeared very fruitful in terms of soil moisture and nitrogen distribution, WUE, grain yield, and yield components than that of other LS levels. The maximum grain yield (8.73 and 9.40 t ha-1) and WUE (1.70 and 1.95 kg m-3) were obtained under D40N25:75 during both growing seasons, which mainly due to that all main yield components in D40N25:75 treatment, such as spikes per unit area, 1000-grain weight, and grains per spike were significantly higher as compared to other treatments. The outcomes of this research may provide a scientific basis of lateral spacing and nitrogen fertigation management for the production of drip-irrigated winter wheat in NCP.


Subject(s)
Nitrogen , Triticum , Seasons , Water
7.
Plants (Basel) ; 9(12)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260470

ABSTRACT

High planting density and nitrogen shortage are two important limiting factors for crop yield. Phytohormones, abscisic acid (ABA), and jasmonic acid (JA), play important roles in plant growth. A pot experiment was conducted to reveal the role of ABA and JA in regulating leaf gas exchange and growth in response to the neighborhood of plants under different nitrogen regimes. The experiment included two factors: two planting densities per pot (a single plant or four competing plants) and two N application levels per pot (1 and 15 mmol·L-1). Compared to when a single plant was grown per pot, neighboring competition decreased stomatal conductance (gs), transpiration (Tr) and net photosynthesis (Pn). Shoot ABA and JA and the shoot-to-root ratio increased in response to neighbors. Both gs and Pn were negatively related to shoot ABA and JA. In addition, N shortage stimulated the accumulation of ABA in roots, especially for competing plants, whereas root JA in competing plants did not increase in N15. Pearson's correlation coefficient (R2) of gs to ABA and gs to JA was higher in N1 than in N15. As compared to the absolute value of slope of gs to shoot ABA in N15, it increased in N1. Furthermore, the stomatal limitation and non-stomatal limitation of competing plants in N1 were much higher than in other treatments. It was concluded that the accumulations of ABA and JA in shoots play a coordinating role in regulating gs and Pn in response to neighbors; N shortage could intensify the impact of competition on limiting carbon fixation and plant growth directly.

SELECTION OF CITATIONS
SEARCH DETAIL
...