Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.526
Filter
1.
Am J Clin Nutr ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025328

ABSTRACT

BACKGROUND: Emerging evidence suggested that S-adenosylhomocysteine (SAH) may be a better serum biomarker for cardiovascular disease than homocysteine (Hcy). However, the role of SAH in hepatocellular carcinoma (HCC) prognosis remains unclear. OBJECTIVES: We aimed to prospectively explore the relationships between serum SAH and related metabolites (Hcy, S-adenosylmethionine [SAM]) with HCC survival, and to evaluate the effect modifications by gene polymorphisms in one-carbon metabolism key enzymes. METHODS: We included 1,080 newly diagnosed HCC patients from the Guangdong Liver Cancer Cohort. Serum SAH, Hcy, and SAM were measured utilizing HPLC-MS/MS. Gene polymorphisms in one-carbon metabolism key enzymes were identified using competitive allele-specific PCR (KASP). Primary outcomes were liver cancer-specific survival (LCSS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using multivariate Cox proportional hazards models. RESULTS: After a median follow-up of 3.6 years, 601 deaths occurred, with 552 (92%) attributed to HCC. Multivariable analysis revealed that patients in the highest quartile of serum SAH concentrations were significantly associated with worse survival compared to those in the lowest quartile, with HRs of 1.58 (95% CI: 1.19, 2.10; P-trend = 0.002) for LCSS and 1.54 (95% CI: 1.18, 2.02; P-trend = 0.001) for OS. There were no significant interactions between serum SAH concentrations and genetic variants of one-carbon metabolism key enzymes. No significant associations were found between serum Hcy, SAM concentrations and SAM/SAH ratio with LCSS or OS. CONCLUSIONS: Higher serum SAH concentrations, rather than homocysteine, were independently associated with worse survival in HCC patients, regardless of the genetic variants of one-carbon metabolism key enzymes. These findings suggesting that SAH may serve as a novel metabolism-related prognostic biomarker for HCC.

2.
Article in English | MEDLINE | ID: mdl-38977480

ABSTRACT

BACKGROUND: Preservation of intracochlear structures and residual hearing has become a major concern in modern cochlear implant. Consequently, many efforts have been made to minimize intraoperative trauma, especially while cochlear fenestration and electrode insertion. METHODS: Building on the core concept of "soft surgery", a modified approach, described as diving technique for cochlear implant electrode array insertion is proposed. Steps and technical points are presented with figures, video and review of relevant anatomy. CONCLUSIONS: This novel diving technique is operationally feasible and safe, promising to minimize intraoperative invasion and thus preserve residual hearing in cochlear implant.

3.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978228

ABSTRACT

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

4.
Angew Chem Int Ed Engl ; : e202408473, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979839

ABSTRACT

We report an endoperoxide compound (E5) which can deliver three therapeutic components by a thermal cycloreversion, namely, singlet oxygen, triplet oxygen and 3-methyl-N-phenyl-2-pyridone, thus targeting multiple mechanisms for treating non-small cell lung cancer and idiopathic pulmonary fibrosis. In aqueous environment, E5 undergoes clean reaction to afford three therapeutic components with a half-life of 8.3 hours without the generation of other by-products, which not only achieves good cytotoxicity toward lung cancer cells and decreases the levels of HIF-1α protein, but also inhibits the TGF-ß1 induced fibrosis in vitro. In vivo experiments also demonstrated the efficacy of E5 in inhibiting tumor growth and relieving idiopathic pulmonary fibrosis, while exhibiting good biocompatibility. Many lines of evidence reveal the therapeutic efficacy of singlet oxygen and 3-methyl-N-phenyl-2-pyridone, and triplet oxygen could downregulate HIF-1α and relieve tumor hypoxia which is a critical issue in conventional PDT. Unlike other combination therapies, in which multiple therapeutic agents are given in independent formulations, our work demonstrates single molecule endoperoxide prodrugs could be developed as new platforms for treatment of cancers and related diseases.

5.
Front Pharmacol ; 15: 1417576, 2024.
Article in English | MEDLINE | ID: mdl-38989138

ABSTRACT

Organoids are in vitro 3D models that maintain their own tissue structure and function. They largely overcome the limitations of traditional tumor models and have become a powerful research tool in the field of oncology in recent years. Gynecological malignancies are major diseases that seriously threaten the life and health of women and urgently require the establishment of models with a high degree of similarity to human tumors for clinical studies to formulate individualized treatments. Currently, organoids are widely studied in exploring the mechanisms of gynecological tumor development as a means of drug screening and individualized medicine. Ovarian, endometrial, and cervical cancers as common gynecological malignancies have high morbidity and mortality rates among other gynecological tumors. Therefore, this study reviews the application of modelling, drug efficacy assessment, and drug response prediction for ovarian, endometrial, and cervical cancers, thereby clarifying the mechanisms of tumorigenesis and development, and providing precise treatment options for gynecological oncology patients.

6.
World J Gastroenterol ; 30(23): 2934-2946, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946875

ABSTRACT

In this editorial, we comment on an article titled "Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases", which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that "autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells". With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.


Subject(s)
Autophagy , Gastrointestinal Diseases , Mitochondria , Mitophagy , Humans , Autophagy/physiology , Gastrointestinal Diseases/pathology , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/physiopathology , Mitochondria/metabolism , Mitochondria/pathology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/metabolism , Animals
7.
Acta Otolaryngol ; : 1-8, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033361

ABSTRACT

BACKGROUND: Keratinizing squamous cell carcinoma (KSCC) is recognized as WHO I nasopharyngeal carcinoma (NPC). Current guidelines for treating nasopharyngeal cancer do not delineate specific strategies for individual pathologic subtypes. OBJECTIVES: To explore the optimal treatment for KSCC of the nasopharynx. MATERIAL AND METHODS: Data on patients were extracted from the SEER database. Survival differences between patients treated with radiotherapy alone and combined surgery were assessed using Kaplan-Meier and Cox regression models and compared using propensity score matching (PSM). In addition, we explored the survival differences between the two groups of patients in different risk stratifications. RESULTS: In our study, 165 patients underwent surgical intervention, while 1238 patients did not. In both univariate (CSS: p = .001, HR = 0.612; OS: p < .001, HR = 0.623) and multivariate (CSS: p = .004, HR = 0.655; OS: p < .001, HR = 0.655) analyses, combined surgery was identified as a significant prognostic factor. These findings were consistent after PSM. Using RPA, patients were categorized into two groups. CSS improved in the high-risk group, whereas the difference in low-risk patients was not significant. CONCLUSIONS AND SIGNIFICANCE: For patients diagnosed with WHO I nasopharyngeal carcinoma, the combination of radiotherapy and surgery has significant clinical advantages, especially for patients at high risk.

8.
J Sep Sci ; 47(12): e2400247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031562

ABSTRACT

Glutathione (GSH) is an important antioxidant that is generated and degraded via the GSH cycle. Quantification of the main components in the GSH cycle is necessary to evaluate the process of GSH. In this study, a robust ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of 10 components (GSH; γ-glutamylcysteine; cysteinyl-glycine; n-acetylcysteine; homocysteine; cysteine; cystine; methionine; glutamate; pyroglutamic acid) in GSH cycle was developed. The approach was optimized in terms of derivative, chromatographic, and spectrometric conditions as well as sample preparation. The unstable thiol groups of GSH, γ-glutamylcysteine, cysteinyl-glycine, n-acetylcysteine, cysteine, and homocysteine were derivatized by n-ethylmaleimide. The derivatized and underivatized analytes were separated on an amino column with gradient elution. The method was further validated in terms of selectivity (no interference), linearity (R2 > 0.99), precision (% relative standard deviation [RSD%] range from 0.57 to 10.33), accuracy (% relative error [RE%] range from -3.42 to 10.92), stability (RSD% < 5.68, RE% range from -2.54 to 4.40), recovery (RSD% range from 1.87 to 7.87) and matrix effect (RSD% < 5.42). The validated method was applied to compare the components in the GSH cycle between normal and oxidative stress cells, which would be helpful in clarifying the effect of oxidative stress on the GSH cycle.


Subject(s)
Glutathione , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Glutathione/analysis , Chromatography, High Pressure Liquid/methods , Humans , Homocysteine/analysis , Cysteine/analysis , Pyrrolidonecarboxylic Acid/analysis , Pyrrolidonecarboxylic Acid/chemistry , Pyrrolidonecarboxylic Acid/metabolism , Dipeptides/analysis , Acetylcysteine/analysis , Acetylcysteine/chemistry , Cystine/analysis
9.
Phytochem Anal ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037036

ABSTRACT

INTRODUCTION: Marsdeniae tenacissimae Caulis (MTC), a popular traditional Chinese medicine, has been widely used in the treatment of tumor diseases. Paederiae scandens Caulis (PSC), which is similar in appearance to MTC, is a common counterfeit product. It is difficult for traditional methods to effectively distinguish between MTC and PSC. Therefore, there is an urgent need for a rapid and accurate method to identify MTC and PSC. OBJECTIVES: The aim is to distinguish between MTC and PSC by analyzing the differences in nonvolatile organic compounds (NVOCs), taste, odor, and volatile organic compounds (VOCs). METHODS: Liquid chromatography-mass spectrometry (LC-MS) was utilized to analyze the NVOCs of MTC and PSC. Electronic tongue (E-tongue) and electronic nose (E-nose) were used to analyze their taste and odor respectively. Gas chromatography-ion mobility spectrometry (GC-IMS) was applied to analyze VOCs. Finally, multivariate statistical analyses were conducted to further investigate the differences between MTC and PSC, including principal component analysis, orthogonal partial least squares discriminant analysis, discriminant factor analysis, and soft independent modeling of class analysis. RESULTS: The results of this study indicate that the integrated strategy of LC-MS, E-tongue, E-nose, GC-IMS, and multivariate statistical analysis can be effectively applied to distinguish between MTC and PSC. Using LC-MS, 25 NVOCs were identified in MTC, while 18 NVOCs were identified in PSC. The major compounds in MTC are steroids, while the major compounds in PSC are iridoid glycosides. Similarly, the distinct taste difference between MTC and PSC was precisely revealed by the E-tongue. Specifically, the pronounced bitterness in PSC was proven to stem from iridoid glycosides, whereas the bitterness evident in MTC was intimately tied to steroids. The E-nose detected eight odor components in MTC and six in PSC, respectively. The subsequent statistical analysis uncovered notable differences in their odor profiles. GC-IMS provided a visual representation of the differences in VOCs between MTC and PSC. The results indicated a relatively high relative content of 82 VOCs in MTC, contrasted with 32 VOCs exhibiting a similarly high relative content in PSC. CONCLUSION: In this study, for the first time, the combined use of LC-MS, E-tongue, E-nose, GC-IMS, and multivariate statistical analysis has proven to be an effective method for distinguishing between MTC and PSC from multiple perspectives. This approach provides a valuable reference for the identification of other visually similar traditional Chinese medicines.

10.
Asian J Androl ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39054792

ABSTRACT

The cause of asthenozoospermia (AZS) is not well understood because of its complexity and heterogeneity. Although some gene mutations have been identified as contributing factors, they are only responsible for a small number of cases. Radial spokes (RSs) are critical for adenosine triphosphate-driven flagellar beating and axoneme stability, which is essential for flagellum motility. In this study, we found novel compound heterozygous mutations in leucine-rich repeat-containing protein 23 (LRRC23; c.1018C>T: p.Q340X and c.881_897 Del: p.R295Gfs*32) in a proband from a nonconsanguineous family with AZS and male infertility. Diff-Quik staining and scanning electron microscopy revealed no abnormal sperm morphology. Western blotting and immunofluorescence staining showed that these mutations suppressed LRRC23 expression in sperm flagella. Additionally, transmission electron microscopy showed the absence of RS3 in sperm flagella, which disrupts stability of the radial spoke complex and impairs motility. Following in vitro fertilization and embryo transfer, the proband's spouse achieved successful pregnancy and delivered a healthy baby. In conclusion, our study indicates that two novel mutations in LRRC23 are associated with AZS, but successful fertility outcomes can be achieved by in vitro fertilization-embryo transfer techniques.

11.
Acta Trop ; 257: 107283, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955322

ABSTRACT

Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.

12.
Article in English | MEDLINE | ID: mdl-39004184

ABSTRACT

OBJECTIVE: To compare oncologic outcomes after laparoscopic or laparotomic surgery to treat epithelial ovarian carcinoma in FIGO stage I. DESIGN: Retrospective cohort study. SETTING: Gynecological cancer ward in a tertiary hospital. PARTICIPANTS: A total of 85 patients with FIGO stage I epithelial ovarian carcinoma who underwent laparoscopic staging surgery and 206 who underwent laparotomic staging surgery at West China Second Hospital, Sichuan University (Chengdu, China) between January 1, 2013 and December 31, 2019. INTERVENTIONS: laparoscopic surgery or laparotomic staging surgery. RESULTS: Before propensity score-based matching, the laparotomy group showed higher prevalence of preoperative elevated CA125 level (48.5% vs 35.3%, p = .045) and tumors > 15 cm (27.2% vs 5.9%, p < .001). Multivariate analysis associated higher body mass index with better overall survival (adjusted HR 0.83, 95%CI 0.70-0.99, p = .043). Among propensity score-matched patients (82 per group) who were matched to each other according to propensity scoring based on age, body mass index, CA125 level, largest tumor diameter, FIGO stage, history of abdominal surgery, and American Society of Anesthesiologists grade, the rate of progression-free survival at 5 years was similar between the laparoscopy group (87.1%, 95%CI 79.3-95.7%) and the laparotomy group (90.9%, 95%CI 84.7-97.6%, p = .524), as was the rate of overall survival at 5 years (93.9%, 95%CI 88.0-100.0% vs 94.7%, 95%CI 89.8-99.9%, p = .900). Regardless of whether patients were matched, the two groups showed similar rates of recurrence of 9-11% during follow-up lasting a median of 54.9 months. CONCLUSIONS: Rates of recurrence and survival may be similar between laparoscopy or laparotomy to treat stage I epithelial ovarian cancer. Since laparoscopy is associated with less bleeding and faster recovery, it may be a safe, effective alternative to laparotomy for appropriate patients.

13.
J Ethnopharmacol ; 334: 118568, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996949

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hyssopus cuspidatus Boriss., a classic Uyghur medicine, is used to treat inflammatory lung diseases such as asthma. But the therapeutic effect and mechanism of the volatile oil of Hyssopus cuspidatus Boriss.(HVO) in asthma therapy remain unclear. AIM OF THE STUDY: We aim to characterize the constituents of HVO, investigate the therapeutic effect in OVA-induced allergic asthmatic mice and further explore the molecular mechanism. MATERIALS AND METHODS: In this study, we applied two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF MS) to identify the ingredients of HVO. We established OVA-induced asthmatic model to investigate the therapeutic effect of HVO. To further explore the potential molecular pathways, we used network pharmacology approach to perform GO and KEGG pathways enrichment, and then built an ingredient-target-pathway network to identify key molecular pathways. Finally, LPS-induced RAW 264.7 macrophages and OVA-induced asthmatic model were used to validate the potential signaling pathways. RESULTS: GC × GC-QTOF MS analysis revealed the presence of 123 compounds of HVO. The sesquiterpenes and monoterpenes are the main constituents. The in vivo study indicated that HVO suppressed OVA-induced eosinophilic infiltration in lung tissues, inhibited the elevation of IgE, IL-4, IL-5, and IL-13 levels, downregulated the expressions of phosphorylated PI3K, Akt, JNK and P38, and maintained epithelial barrier integrity via reducing the degradation of occludin, Zo-1, Zo-2, and E-cadherin. The in vitro study also revealed an inhibition of NO release and downregulation of phosphorylated PI3K, Akt, JNK and P38 levels. CONCLUSION: HVO alleviates airway inflammation in OVA-induced asthmatic mice by inhibiting PI3K/Akt/JNK/P38 signaling pathway and maintaining airway barrier integrity via reducing the degradation of occludin, Zo-1, Zo-2, and E-cadherin.

14.
iScience ; 27(6): 110124, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38957787

ABSTRACT

Alpine lakes play pivotal roles in plateau hydrological processes but are highly sensitive to climate change, yet we lack comprehensive knowledge of their multitrophic biodiversity patterns. Here, we compared the biodiversity characteristics of diverse taxonomic groups across water depths and in surface sediments from a freshwater lake and a hypersaline lake on the northwestern Tibetan Plateau. Using multi-marker environmental DNA metabarcoding, we detected 134 cyanobacteria, 443 diatom, 1,519 invertebrate, and 28 vertebrate taxa. Each group had a substantially different community composition in the two lakes, and differences were also found between water and sediments within each lake. Cooccurrence network analysis revealed higher network complexity, lower modularity, and fewer negative cohesions in the hypersaline lake, suggesting that high salinity may destabilize ecological networks. Our results provide the first holistic view of Tibetan lake biodiversity under contrasting salinity levels and reveal structural differences in the ecological networks that may impact ecosystem resilience.

16.
Sensors (Basel) ; 24(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38931538

ABSTRACT

A thiourea-based colorimetric sensor incorporating polyethyleneimine (PEI) and chromophoric nitrophenyl groups was synthesized and utilized for detecting various anions. Structural characterization of the sensor was accomplished using FTIR and 1H-NMR spectroscopy. The sensor's interactions and colorimetric recognition capabilities with different anions, including CI-, Br-, I-, F-, NO3-, PF6-, AcO-, H2PO4-, PO43-, and SO42-, were investigated via visual observation and UV/vis spectroscopy. Upon adding SO42-, F-, and AcO- anions, the sensor exhibited distinct color changes from colorless to yellow and yellowish, while other anions did not induce significant color alterations. UV/vis spectroscopic titration experiments conducted in a DMSO/H2O solution (9:1 volume ratio) demonstrated the sensor's selectivity toward SO42-, F-, and AcO-. The data revealed that the formation of the main compounds and anion complexes was mediated by hydrogen bonding, leading to signal changes in the nitrophenyl thiourea-modified PEI spectrum.

17.
ACS Photonics ; 11(6): 2388-2396, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911841

ABSTRACT

Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities of molecular transport. Such combined optical and electrical probes have proven useful for the fundamental understanding of metal-molecule contacts and contribute to the development of nanoscale optoelectronic devices including ultrafast electronics and nanosensors. Here, we employ a self-assembled metal-molecule-metal junction with a nanoparticle bridge to investigate correlated fluctuations in conductance and tunneling-induced light emission at room temperature. Despite the presence of hundreds of molecules in the junction, the electrical conductance and light emission are both highly sensitive to atomic-scale fluctuations-a phenomenology reminiscent of picocavities observed in Raman scattering and of luminescence blinking from photoexcited plasmonic junctions. Discrete steps in conductance associated with fluctuating emission intensities through the multiple plasmonic modes of the junction are consistent with a finite number of randomly localized, point-like sources dominating the optoelectronic response. Contrasting with these microscopic fluctuations, the overall plasmonic and electronic functionalities of our devices feature long-term survival at room temperature and under an electrical bias of a few volts, allowing for measurements over several months.

18.
Biomed Mater ; 19(4)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916246

ABSTRACT

Patients with central neuronal damage may suffer severe consequences, but effective therapies remain unclear. Previous research has established the transplantation of neural stem cells that generate new neurons to replace damaged ones. In a new field of scientific research, the extracellular secretion of NPSCs (NSPCs-ES) has been identified as an alternative to current chemical drugs. Many preclinical studies have shown that NSPCs-ES are effective in models of various central nervous system diseases (CNS) injuries, from maintaining functional structures at the cellular level to providing anti-inflammatory functions at the molecular level, as well as improving memory and motor functions, reducing apoptosis in neurons, and mediating multiple signaling pathways. The NSPC-ES can travel to the damaged tissue and exert a broad range of therapeutic effects by supporting and nourishing damaged neurons. However, gene editing and cell engineering techniques have recently improved therapeutic efficacy by modifying NSPCs-ES. Consequently, future research and application of NSPCs-ES may provide a novel strategy for the treatment of CNS diseases in the future. In this review, we summarize the current progress on these aspects.


Subject(s)
Central Nervous System Diseases , Neural Stem Cells , Humans , Animals , Central Nervous System Diseases/therapy , Neurons/metabolism , Signal Transduction , Apoptosis
19.
Eur J Pharmacol ; 978: 176775, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38925288

ABSTRACT

The development of multitarget opioid drugs has emerged as an attractive approach for innovative pain management with reduced side effects. In the present study, a novel hybrid peptide BNT12 containing the opioid and neurotensin (NT)-like fragments was synthesized and pharmacologically characterized. In acute radiant heat paw withdrawal test, intracerebroventricular (i.c.v.) administration of BNT12 produced potent antinociception in mice. The central antinociceptive activity of BNT12 was mainly mediated by µ-, δ-opioid receptor, neurotensin receptor type 1 (NTSR1) and 2 (NTSR2), supporting a multifunctional agonism of BNT12 in the functional assays. BNT12 also exhibited significant antinociceptive effects in spared nerve injury (SNI)-neuropathic pain, complete Freund's adjuvant (CFA)-induced inflammatory pain, acetic acid-induced visceral and formalin-induced pain after i.c.v. administration. Furthermore, BNT12 exhibited substantial reduction of acute antinociceptive tolerance, shifted the dose-response curve to the right by only 1.3-fold. It is noteworthy that BNT12 showed insignificant chronic antinociceptive tolerance at the supraspinal level. In addition, BNT12 exhibited reduced or no opioid-like side effects on conditioned place preference (CPP) response, naloxone-precipitated withdrawal response, acute hyperlocomotion, motor coordination, gastrointestinal transit, and cardiovascular responses. The present investigation demonstrated that the novel hybrid peptide BNT12 might serve as a promising analgesic candidate with limited opioid-like side effects.


Subject(s)
Neurotensin , Receptors, Neurotensin , Animals , Male , Mice , Neurotensin/analogs & derivatives , Neurotensin/pharmacology , Neurotensin/chemistry , Receptors, Neurotensin/metabolism , Receptors, Neurotensin/agonists , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/administration & dosage , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Drug Tolerance , Pain/drug therapy
20.
Chem Commun (Camb) ; 60(57): 7374-7377, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38922126

ABSTRACT

Detailed photophysical processes of two AuCu14 clusters with different substituents (-F or -C(CH3)3) of the thiol ligand were studied in this work. The electronic effect of the substituents led to structural shrinkage, thus enhancing the luminous intensity. The internal conversion (IC) and intersystem crossing (ISC) rates in the AuCu14-C(CH3)3 crystal were slower compared with the AuCu14-F crystal, which was caused by the steric effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...