Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 8(33): 54629-54639, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28903370

ABSTRACT

The epithelial cell adhesion molecule (EpCAM) is a type I transmembrane glycoprotein that is regarded as one of the markers for tumor initiating cells (TIC) in human hepatocellular carcinoma (HCC). Much work has been directed towards targeting these TICs as a mean of placing these master regulators of cell proliferation and drug resistance under control. Human bone marrow-derived mesenchymal stem cells are known to exhibit an innate property of tumor tropism. However, the possible relationship between MSC and TIC is not well understood. In this study, we show that MSC migration to HCC can be effectively inhibited by TACE and γ-secretase inhibitors that stop the activation of EpCAM signaling event. Silencing of EpCAM expression through siRNA and antibody approaches also resulted in impaired MSC migration. By contrast, increase levels of EpICD proteins in HCC cells and HCC mouse xenografts resulted in enhanced MSC migration. Taken together, these findings show that MSC is drawn to the more oncogenic population of HCC, and could potentially serve as a cell-based carrier of therapeutic genes to target EpICD-enriched hepatic tumor cells.

2.
BMC Cancer ; 15: 255, 2015 Apr 11.
Article in English | MEDLINE | ID: mdl-25886314

ABSTRACT

BACKGROUND: The treatment of glioblastoma multiforme (GBM) is an unmet clinical need. The 5-year survival rate of patients with GBM is less than 3%. Temozolomide (TMZ) remains the standard first-line treatment regimen for gliomas despite the fact that more than 90% of recurrent gliomas do not respond to TMZ after repeated exposure. We have also independently shown that many of the Asian-derived glioma cell lines and primary cells derived from Singaporean high-grade glioma patients are indeed resistant to TMZ. This issue highlights the need to develop new effective anti-cancer treatment strategies. In a recent study, wild-type epidermal growth factor receptor (wtEGFR) has been shown to phosphorylate a truncated EGFR (known as EGFRvIII), leading to the phosphorylation of STAT proteins and progression in gliomagenesis. Despite the fact that combination of EGFR targeting drugs and rapamycin has been used before, the effect of mono-treatment of Nimotuzumab, rapamycin and combination therapy in human glioma expressing different types of EGFR is not well-studied. Herein, we evaluated the efficacy of dual blockage using monoclonal antibody against EGFR (Nimotuzumab) and an mTOR inhibitor (rapamycin) in Caucasian patient-derived human glioma cell lines, Asian patient-derived human glioma cell lines, primary glioma cells derived from the Mayo GBM xenografts, and primary short-term glioma culture derived from high-grade glioma patients. METHODS: The combination effect of Nimotuzumab and rapamycin was examined in a series of primary human glioma cell lines and glioma cell lines. The cell viability was compared to TMZ treatment alone. Endogenous expressions of EGFR in various GBM cells were determined by western blotting. RESULTS: The results showed that combination of Nimotuzumab with rapamycin significantly enhanced the therapeutic efficacy of human glioma cells compared to single treatment. More importantly, many of the Asian patient-derived glioma cell lines and primary cells derived from Singaporean high-grade gliomas, which showed resistance to TMZ, were susceptible to the combined treatments. CONCLUSIONS: In conclusion, our results strongly suggest that combination usage of Nimotuzumab and rapamycin exert higher cytotoxic activities than TMZ. Our data suggest that this combination may provide an alternative treatment for TMZ-resistant gliomas regardless of the EGFR status.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Sirolimus/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mutation , Temozolomide
3.
FASEB J ; 28(10): 4359-68, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25271298

ABSTRACT

Human bone marrow-derived mesenchymal stem cells (MSCs) have the unique ability to home toward injuries or tumor sites. We have previously shown that the tumor-tropic property is dependent on the intrinsic expression and activity of the matrix remodeling gene, matrix metalloproteinase 1 (MMP-1). Herein, crosstalk between MMP-1/protease activated receptor 1 (PAR-1) and the G-protein coupled receptor stromal-derived growth factor 1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR-4) in facilitating cell migration was investigated. Gain-of-function and RNA interference (RNAi) technology were used to evaluate the interplay between the key players. The downstream effect on the tumor-tropic migration of MSCs was investigated using modified Boyden chamber assay. Neutralizing PAR-1 activation using monoclonal antibody and targeted knockdown of MMP-1 using RNAi resulted in decreased expression of SDF-1, which was not observed in control-RNAi-transfected cells. Overexpression of CXCR-4 failed to promote MSC migration; the percentage of migrated cells toward tumor cell conditioned medium was similar to the vector-transduced and the CXCR-4-transduced MSCs. Furthermore, inhibition of SDF-1/CXCR-4 signaling using AMD3100 reduced MSC migration through the deregulation of MMP-1 promoter activities, protein expression, and metalloproteinase activity. Collectively, our results showed that MMP-1-mediated MSC tumor tropism is dependent on crosstalk with the SDF-1/CXCR-4 axis.


Subject(s)
Cell Movement , Chemokine CXCL12/metabolism , Matrix Metalloproteinase 1/metabolism , Mesenchymal Stem Cells/metabolism , Receptors, CXCR4/metabolism , Tumor Microenvironment , Cells, Cultured , Chemokine CXCL12/genetics , Female , Humans , Male , Matrix Metalloproteinase 1/genetics , Mesenchymal Stem Cells/physiology , Middle Aged , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Receptors, CXCR4/genetics
4.
Hum Gene Ther ; 18(3): 222-31, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17355186

ABSTRACT

We previously generated a herpes simplex virus type 1 (HSV-1)-based amplicon vector (denoted pC8-36) in which gene expression from the minimal cyclin A promoter is repressed by preventing the binding of a trans-activating protein, Gal4-NF-YA, to it through selective interaction with the transcriptional repressor protein CDF-1. Because CDF-1 is absent in actively dividing cells, transgene expression conferred by the pC8-36 vector is therefore cell cycle dependent. As gene therapy evolves to become a promising therapeutic modality for many human diseases, there is an increasing need to further improve the kinetics of gene regulation. In the present study, we examined whether the availability of more binding sites for CDF-1 repressor proteins could enhance transgene expression. Using an overlap extension polymerase chain reaction (PCR) method, the CDE and CHR elements within the minimum cyclin A promoter were multimerized to contain two, three, and six copies of the designated CDE/CHR sequence. Interestingly, our results demonstrated that six-copy CDE/CHR sequence motifs (pC8-6CC-Luc) conferred an approximately 20-fold increase in the ratio of cell cycle regulation compared with the previous reported construct. Further, the overall transcriptional activities mediated by pC8-6CC-Luc were stronger compared with the native human survivin promoter, which consists of three copies of the CDE element and one copy of the CHR element. pC8-6CC-Luc contained, in essence, only the synthetic six-copy CDE/CHR sequence motif (about 262 bp). In comparison with other native endogenous promoters, which usually contain many other transcription binding sites, pC8-6CC-Luc amplicon vectors should confer better regulated and consistent transgene expression and may be considered a gene delivery vector of choice to target actively proliferating tumor cells.


Subject(s)
Cell Cycle/genetics , Genetic Therapy , Genetic Vectors/genetics , Herpesvirus 1, Human/genetics , Neoplasms/therapy , Animals , Base Sequence , Binding Sites , Cell Line, Tumor , Cell Proliferation , Cyclin A/genetics , Female , Genetic Engineering , Humans , Inhibitor of Apoptosis Proteins , Luciferases/analysis , Luciferases/genetics , Mice , Mice, Inbred BALB C , Microtubule-Associated Proteins/genetics , Molecular Sequence Data , Neoplasm Proteins/genetics , Repressor Proteins/metabolism , Survivin , Tandem Repeat Sequences , Transgenes/genetics , Virion
SELECTION OF CITATIONS
SEARCH DETAIL
...