Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611202

ABSTRACT

Curcumin is an antioxidant that can effectively eliminate free radicals. However, as its oral bioavailability is low, an effective delivery method is required. Phospholipid-based liposomes can encapsulate lipophilic drugs, such as curcumin, while liposome, cholesterol, and gum Arabic (GA) can enhance the internal and external stability of drug membranes. This present study used concentrations of cholesterol (Cchol) and GA (CGA), ranging from 0 to 10, 20, 30, and 40% as well as 0 to 5, 10, 15, 20, 30, and 40%, respectively, to encapsulate curcumin in a GA-cocoliposome (CCL/GA) matrix and test its efficacy in simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). The absence of new characteristic peaks in the Fourier transform infrared (FTIR) spectra results indicate the presence of non-covalent interactions in the CCL/GA encapsulation. Furthermore, increasing the Cchol decreased the encapsulation efficiency (EE), loading capacity (LC), and antioxidant activity (IR) of the CCL/GA encapsulation but increased its release rate (RR). Conversely, increasing CGA increased its EE and IR but decreased its LC and RR. The two conditions applied confirmed this. Liposomal curcumin had the highest IR in SIF (84.081%) and the highest RR in SGF (0.657 ppm/day). Furthermore, liposomes loaded with 10% Cchol and 20% CGA performed best in SIF, while those loaded with 10% Cchol and 30% CGA performed best in SGF. Lastly, the CCL/GA performed better in SIF than SGF.

2.
J Tradit Complement Med ; 13(1): 11-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685073

ABSTRACT

Common treatments for the management of diabetes have limitations due to side effects, hence the need for continuous research to discover new remedies with better therapeutic efficacy. Previously, we have reported that the combination treatment of gallic acid (20 mg/kg) and andrographolide (10 mg/kg) for 15 days demonstrated synergistic hypoglycemic activity in the streptozotocin (STZ)-induced insulin-deficient diabetes rat model. Here, we attempt to further elucidate the effect of this combination therapy at the biochemical, histological and molecular levels. Our biochemical analyses showed that the combination treatment significantly increased the serum insulin level and decreased the total cholesterol and triglyceride level of the diabetic animals. Histological examinations of H&E stained pancreas, liver, kidney and adipose tissues of combination-treated diabetic animals showed restoration to the normalcy of the tissues. Besides, the combination treatment significantly enhanced the level of glucose transporter-4 (GLUT4) protein expression in the skeletal muscle of treated diabetic animals compared to single compound treated and untreated diabetic animals. The molecular docking analysis on the interaction of gallic acid and/or andrographolide with the adiponectin receptor 1 (AdipoR1), a key component in the regulation of pancreatic insulin secretion, revealed a greater binding affinity of AdipoR1 to both compounds compared to individual compounds. Taken together, these findings suggest the combination of gallic acid and andrographolide as a potent therapy for the management of diabetes mellitus.

3.
Gels ; 8(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36354611

ABSTRACT

The abundance of applications of alginates in aqueous surroundings created by their interactions with water is a fascinating area of research. In this paper, computational analysis was used to evaluate the conformation, hydrogen bond network, and stabilities for putative intermolecular interactions between alginate dimers and water molecules. Two structural forms of alginate (alginic acid, alg, and sodium alginate, SA) were evaluated for their interactions with water molecules. The density functional theory (DFT-D3) method at the B3LYP functional and the basis set 6-31++G** was chosen for calculating the data. Hydrogen bonds were formed in the Alg-(H2O)n complexes, while the SA-(H2O)n complexes showed an increase in Van der Walls interactions and hydrogen bonds. Moreover, in the SA-(H2O)n complexes, metal-nonmetal bonds existed between the sodium atom in SA and the oxygen atom in water (Na…O). All computational data in this study demonstrated that alginate dimers and water molecules had moderate to high levels of interaction, giving more stability to their complex structure.

4.
Molecules ; 27(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744978

ABSTRACT

Biopolymers, especially polysaccharides (e.g., gum Arabic), are widely applied as drug carriers in drug delivery systems due to their advantages. Curcumin, with high antioxidant ability but limited solubility and bioavailability in the body, can be encapsulated in gum Arabic to improve its solubility and bioavailability. When curcumin is encapsulated in gum Arabic, it is essential to understand how it works in various conditions. As a result, in Simulated Intestinal Fluid and Simulated Gastric Fluid conditions, we investigated the potential of gum Arabic as the drug carrier of curcumin. This study was conducted by varying the gum Arabic concentrations, i.e., 5, 10, 15, 20, 30, and 40%, to encapsulate 0.1 mg/mL of curcumin. Under both conditions, the greater the gum Arabic concentration, the greater the encapsulation efficiency and antioxidant activity of curcumin, but the worse the gum Arabic loading capacity. To achieve excellent encapsulation efficiency, loading capacity, and antioxidant activity, the data advises that 10% is the best feasible gum Arabic concentration. Regarding the antioxidant activity of curcumin, the findings imply that a high concentration of gum Arabic was effective, and the Simulated Intestinal Fluid brought an excellent surrounding compared to the Simulated Gastric Fluid solution. Moreover, the gum Arabic releases curcumin faster in the Simulated Gastric Fluid condition.


Subject(s)
Curcumin , Antioxidants , Drug Carriers , Drug Delivery Systems , Gum Arabic
5.
Int J Biol Macromol ; 168: 339-349, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33309669

ABSTRACT

The formation of chitosan dimer and its interaction with urea and creatinine have been investigated at the density functional theory (DFT) level (B3LYP-D3/6-31++G**) to study the transport phenomena in hemodialysis membrane. The interaction energy of chitosan-creatinine and chitosan-urea complexes are in range -4 kcal/mol < interaction energy <-20 kcal/mol which were classified in medium hydrogen bond interaction. The chemical reactivity parameter proved that creatinine was more electrophilic and easier to bind chitosan than urea. The energy gap of HOMO-LUMO of chitosan-creatinine complex was lower than chitosan-urea complex that indicating chitosan-creatinine complex was more reactive and easier to transport electron than chitosan-urea complex. Moreover, the natural bond orbital (NBO) analysis showed a high contribution of hydrogen bond between chitosan-creatinine and chitosan-urea. The chitosan-creatinine interaction has a stronger hydrogen bond than chitosan-urea through the interaction O18-H34....N56 with stabilizing energy = -13 kcal/mol. The quantum theory atom in molecule (QTAIM) also supported NBO data. All data presented that creatinine can make hydrogen bond interaction stronger with chitosan than urea, that indicated creatinine easier to transport in the chitosan membrane than urea during hemodialysis process.


Subject(s)
Chitosan/chemistry , Creatinine/chemistry , Urea/chemistry , Computational Chemistry/methods , Electrons , Hydrogen Bonding , Membranes/chemistry , Models, Molecular , Renal Dialysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...