Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10871, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740777

ABSTRACT

Reinforcement of the Internet of Medical Things (IoMT) network security has become extremely significant as these networks enable both patients and healthcare providers to communicate with each other by exchanging medical signals, data, and vital reports in a safe way. To ensure the safe transmission of sensitive information, robust and secure access mechanisms are paramount. Vulnerabilities in these networks, particularly at the access points, could expose patients to significant risks. Among the possible security measures, biometric authentication is becoming a more feasible choice, with a focus on leveraging regularly-monitored biomedical signals like Electrocardiogram (ECG) signals due to their unique characteristics. A notable challenge within all biometric authentication systems is the risk of losing original biometric traits, if hackers successfully compromise the biometric template storage space. Current research endorses replacement of the original biometrics used in access control with cancellable templates. These are produced using encryption or non-invertible transformation, which improves security by enabling the biometric templates to be changed in case an unwanted access is detected. This study presents a comprehensive framework for ECG-based recognition with cancellable templates. This framework may be used for accessing IoMT networks. An innovative methodology is introduced through non-invertible modification of ECG signals using blind signal separation and lightweight encryption. The basic idea here depends on the assumption that if the ECG signal and an auxiliary audio signal for the same person are subjected to a separation algorithm, the algorithm will yield two uncorrelated components through the minimization of a correlation cost function. Hence, the obtained outputs from the separation algorithm will be distorted versions of the ECG as well as the audio signals. The distorted versions of the ECG signals can be treated with a lightweight encryption stage and used as cancellable templates. Security enhancement is achieved through the utilization of the lightweight encryption stage based on a user-specific pattern and XOR operation, thereby reducing the processing burden associated with conventional encryption methods. The proposed framework efficacy is demonstrated through its application on the ECG-ID and MIT-BIH datasets, yielding promising results. The experimental evaluation reveals an Equal Error Rate (EER) of 0.134 on the ECG-ID dataset and 0.4 on the MIT-BIH dataset, alongside an exceptionally large Area under the Receiver Operating Characteristic curve (AROC) of 99.96% for both datasets. These results underscore the framework potential in securing IoMT networks through cancellable biometrics, offering a hybrid security model that combines the strengths of non-invertible transformations and lightweight encryption.


Subject(s)
Computer Security , Electrocardiography , Internet of Things , Electrocardiography/methods , Humans , Algorithms , Signal Processing, Computer-Assisted , Biometric Identification/methods
2.
Neural Comput Appl ; 35(14): 10695-10716, 2023.
Article in English | MEDLINE | ID: mdl-37155550

ABSTRACT

Emergency medicine (EM) is one of the attractive research fields in which researchers investigate their efforts to diagnose and treat unforeseen illnesses or injuries. There are many tests and observations are involved in EM. Detection of the level of consciousness is one of these observations, which can be detected using several methods. Among these methods, the automatic estimation of the Glasgow coma scale (GCS) is studied in this paper. The GCS is a medical score used to describe a patient's level of consciousness. This type of scoring system requires medical examination that may not be available with the shortage of the medical expert. Therefore, the automatic medical calculation for a patient's level of consciousness is highly needed. Artificial intelligence has been deployed in several applications and appears to have a high performance regarding providing automatic solutions. The main objective of this work is to introduce the edge/cloud system to improve the efficiency of the consciousness measurement through efficient local data processing. Moreover, an efficient machine learning (ML) model to predict the level of consciousness of a certain patient based on the patient's demographic, vital signs, and laboratory tests is proposed, as well as maintaining the explainability issue using Shapley additive explanations (SHAP) that provides natural language explanation in a form that helps the medical expert to understand the final prediction. The developed ML model is validated using vital signs and laboratory tests extracted from the MIMIC III dataset, and it achieves superior performance (mean absolute error (MAE) = 0.269, mean square error (MSE) = 0.625, R 2 score = 0.964). The resulting model is accurate, medically intuitive, and trustworthy.

3.
Comput Intell Neurosci ; 2022: 8032673, 2022.
Article in English | MEDLINE | ID: mdl-35154306

ABSTRACT

Emotion recognition is one of the trending research fields. It is involved in several applications. Its most interesting applications include robotic vision and interactive robotic communication. Human emotions can be detected using both speech and visual modalities. Facial expressions can be considered as ideal means for detecting the persons' emotions. This paper presents a real-time approach for implementing emotion detection and deploying it in the robotic vision applications. The proposed approach consists of four phases: preprocessing, key point generation, key point selection and angular encoding, and classification. The main idea is to generate key points using MediaPipe face mesh algorithm, which is based on real-time deep learning. In addition, the generated key points are encoded using a sequence of carefully designed mesh generator and angular encoding modules. Furthermore, feature decomposition is performed using Principal Component Analysis (PCA). This phase is deployed to enhance the accuracy of emotion detection. Finally, the decomposed features are enrolled into a Machine Learning (ML) technique that depends on a Support Vector Machine (SVM), k-Nearest Neighbor (KNN), Naïve Bayes (NB), Logistic Regression (LR), or Random Forest (RF) classifier. Moreover, we deploy a Multilayer Perceptron (MLP) as an efficient deep neural network technique. The presented techniques are evaluated on different datasets with different evaluation metrics. The simulation results reveal that they achieve a superior performance with a human emotion detection accuracy of 97%, which ensures superiority among the efforts in this field.


Subject(s)
Machine Learning , Support Vector Machine , Algorithms , Bayes Theorem , Emotions , Humans , Speech
4.
Comput Intell Neurosci ; 2021: 8016525, 2021.
Article in English | MEDLINE | ID: mdl-34938329

ABSTRACT

Smart health surveillance technology has attracted wide attention between patients and professionals or specialists to provide early detection of critical abnormal situations without the need to be in direct contact with the patient. This paper presents a secure smart monitoring portable multivital signal system based on Internet-of-Things (IoT) technology. The implemented system is designed to measure the key health parameters: heart rate (HR), blood oxygen saturation (SpO2), and body temperature, simultaneously. The captured physiological signals are processed and encrypted using the Advanced Encryption Standard (AES) algorithm before sending them to the cloud. An ESP8266 integrated unit is used for processing, encryption, and providing connectivity to the cloud over Wi-Fi. On the other side, trusted medical organization servers receive and decrypt the measurements and display the values on the monitoring dashboard for the authorized specialists. The proposed system measurements are compared with a number of commercial medical devices. Results demonstrate that the measurements of the proposed system are within the 95% confidence interval. Moreover, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Relative Error (MRE) for the proposed system are calculated as 1.44, 1.12, and 0.012, respectively, for HR, 1.13, 0.92, and 0.009, respectively, for SpO2, and 0.13, 0.11, and 0.003, respectively, for body temperature. These results demonstrate the high accuracy and reliability of the proposed system.


Subject(s)
Cloud Computing , Internet of Things , Communication , Humans , Oxygen Saturation , Reproducibility of Results
5.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C118-C124, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33175740

ABSTRACT

A contact-free inexpensive measurement system with an algorithm based on the integral form of video frames is proposed to estimate the respiration rate from an extracted respiration pattern. The proposed algorithm is applied and tested on 28 videos of sleeping-simulated positions, and the results are compared with the manual visual inspection values. With linear regression, the determination coefficient (R2) is 0.961, which demonstrates high agreement with reference measurements. In addition, the Bland-Altman plot shows that almost all data points are within the 95% limits of agreement. Moreover, the time complexity of the proposed algorithm, which involves taking just a single point value of the integral image, is lower than that of traditional methods that circulate over a large number of points. In other words, the proposed algorithm achieves O(1) fixed-time complexity compared to O(N2) for traditional methods. The average speed of processing is enhanced by about 17.4%.


Subject(s)
Monitoring, Physiologic/methods , Respiratory Rate , Video Recording , Algorithms , Humans , Telemedicine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...