Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4061, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744897

ABSTRACT

Transcription stress has been linked to DNA damage -driven aging, yet the underlying mechanism remains unclear. Here, we demonstrate that Tcea1-/- cells, which harbor a TFIIS defect in transcription elongation, exhibit RNAPII stalling at oxidative DNA damage sites, impaired transcription, accumulation of R-loops, telomere uncapping, chromatin bridges, and genome instability, ultimately resulting in cellular senescence. We found that R-loops at telomeres causally contribute to the release of telomeric DNA fragments in the cytoplasm of Tcea1-/- cells and primary cells derived from naturally aged animals triggering a viral-like immune response. TFIIS-defective cells release extracellular vesicles laden with telomeric DNA fragments that target neighboring cells, which consequently undergo cellular senescence. Thus, transcription stress elicits paracrine signals leading to cellular senescence, promoting aging.


Subject(s)
Cellular Senescence , Cytosol , DNA Damage , Paracrine Communication , Telomere , Cellular Senescence/genetics , Animals , Telomere/metabolism , Telomere/genetics , Mice , Cytosol/metabolism , DNA/metabolism , Transcription, Genetic , Mice, Knockout , Humans , Extracellular Vesicles/metabolism , Genomic Instability , Aging/genetics , Aging/metabolism , Oxidative Stress , Mice, Inbred C57BL
2.
Sci Adv ; 9(45): eadi2095, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37939182

ABSTRACT

Co-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response. Abrogation of TOP2B leads to the diminished recruitment of XPF, CTCF, and the cohesin subunits to promoters of actively transcribed genes and R-loops and the concurrent impairment of CTCF-mediated DNA looping. Together, our findings disclose an essential role for XPF with TOP2B and the CTCF/cohesin complex in R-loop processing for transcription activation with important ramifications for DNA repair-deficient syndromes associated with transcription-associated DNA damage.


Subject(s)
DNA-Binding Proteins , R-Loop Structures , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Chromosomes , DNA Repair , Chromatin
3.
J Cell Mol Med ; 26(1): 75-87, 2022 01.
Article in English | MEDLINE | ID: mdl-34850540

ABSTRACT

The signal transducer and activator of transcription 3 (STAT3) oncogene is a transcription factor with a central role in head and neck cancer. Hypopharyngeal cells (HCs) exposed to acidic bile present aberrant activation of STAT3, possibly contributing to its oncogenic effect. We hypothesized that STAT3 contributes substantially to the bile reflux-induced molecular oncogenic profile, which can be suppressed by STAT3 silencing or pharmacological inhibition. To explore our hypothesis, we targeted the STAT3 pathway, by knocking down STAT3 (STAT3 siRNA), and inhibiting STAT3 phosphorylation (Nifuroxazide) or dimerization (SI3-201; STA-21), in acidic bile (pH 4.0)-exposed human HCs. Immunofluorescence, luciferase assay, Western blot, enzyme-linked immunosorbent assay and qPCR analyses revealed that STAT3 knockdown or pharmacologic inhibition significantly suppressed acidic bile-induced STAT3 activation and its transcriptional activity, Bcl-2 overexpression, transcriptional activation of IL6, TNF-α, BCL2, EGFR, STAT3, RELA(p65), REL and WNT5A, and cell survival. Our novel findings document the important role of STAT3 in bile reflux-related molecular oncogenic events, which can be dramatically prevented by STAT3 silencing. STA-21, SI3-201 or Nifuroxazide effectively inhibited STAT3 and cancer-related inflammatory phenotype, encouraging their single or combined application in preventive or therapeutic strategies of bile reflux-related hypopharyngeal carcinogenesis.


Subject(s)
Bile Reflux , STAT3 Transcription Factor , Carcinogenesis/genetics , Cell Line, Tumor , Humans , NF-kappa B/metabolism , Oncogenes , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction
4.
J Invest Dermatol ; 141(4S): 961-967, 2021 04.
Article in English | MEDLINE | ID: mdl-33494932

ABSTRACT

In mammals, genome instability and aging are intimately linked as illustrated by the growing list of patients with progeroid and animal models with inborn DNA repair defects. Until recently, DNA damage was thought to drive aging by compromising transcription or DNA replication, thereby leading to age-related cellular malfunction and somatic mutations triggering cancer. However, recent evidence suggests that DNA lesions also elicit widespread epigenetic alterations that threaten cell homeostasis as a function of age. In this review, we discuss the functional links of persistent DNA damage with the epigenome in the context of aging and age-related diseases.


Subject(s)
Aging/genetics , Epigenesis, Genetic , Epigenome , Telomere Shortening , Animals , DNA Damage , DNA Repair , Genomic Instability , Humans , Models, Animal
5.
Hum Gene Ther Methods ; 25(6): 317-27, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25333506

ABSTRACT

High numbers of genetically modified hematopoietic stem cells (HSCs) equipped with enhanced engrafting potential are required for successful stem cell gene therapy. By using thalassemia as a model, we investigated the functional properties of hematopoietic stem and progenitor cells (HSPCs) from Hbb(th3)/45.2(+) mice after mobilization with G-CSF, plerixafor, or G-CSF+plerixafor and the engraftment kinetics of primed cells after competitive primary and noncompetitive secondary transplantation. G-CSF+plerixafor yielded the highest numbers of HSPCs, while G-CSF+plerixafor-mobilized Hbb(th3)/45.2(+) cells, either unmanipulated or transduced with a reporter vector, achieved faster hematologic reconstitution and higher levels of donor chimerism over all other types of mobilized cells, after competitive transplantation to B6.BoyJ/45.1(+) recipients. The engraftment benefit observed in the G-CSF+plerixafor group was attributed to the more primitive stem cell phenotype of G-CSF+plerixafor-LSK cells, characterized by higher CD150(+)/CD48 expression. Moreover, secondary G-CSF+plerixafor recipients displayed stable or even higher chimerism levels as compared with primary engrafted mice, thus maintaining or further improving engraftment levels over G-CSF- or plerixafor-secondary recipients. Plerixafor-primed cells displayed the lowest competiveness over all other mobilized cells after primary or secondary transplantation, probably because of the higher frequency of more actively proliferating LK cells. Overall, the higher HSC yields, the faster hematological recovery, and the superiority in long-term engraftment indicate G-CSF+plerixafor-mobilized blood as an optimal graft source, not only for thalassemia gene therapy, but also for stem cell gene therapy applications in general.


Subject(s)
Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation , Heterocyclic Compounds/pharmacology , Recombinant Proteins/pharmacology , beta-Thalassemia/therapy , Animals , Antigens, Differentiation/analysis , Benzylamines , Cell Cycle , Cell Survival , Combined Modality Therapy , Cyclams , Disease Models, Animal , Genes, Reporter , Genetic Vectors , Graft Survival , Lentivirus , Mice , Mice, Mutant Strains , Radiation Chimera , Splenectomy , Transplantation Chimera , beta-Thalassemia/genetics , beta-Thalassemia/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...